

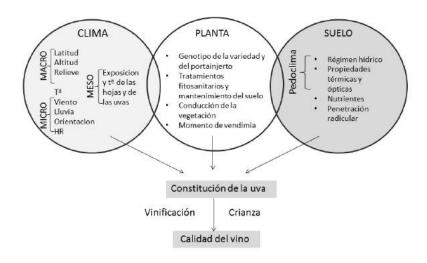
PROYECTO DE ZONIFICACIÓN D.O. PROTEGIDA ALICANTE INFORME

2012

CONCEPCIÓN PAREDES GIL
RAÚL MORAL HERRERO
MARIA DOLORES PÉREZ MURCIA
JOSEP XAVIER BARBER VALLES
ENCARNACIÓN MARTÍINEZ SABATER
ENRIQUE AGULLÓ RUIZ
EVA MARIA MEDINA RUFETE
GUILLERMO PARRA GALANT
ANTONIO JOSE MARÍN MARTÍNEZ

INDICE

1. INTRODUCCIÓN	1
2. GEOLOGÍA DE LA ZONA	3
3. DATOS EDAFOLÓGICOS	8
3.1. Situación y descripción de las parcelas	8
3.2. Muestreos y datos analíticos	15
3.3. Métodos estadísticos	20
3.4. Propiedades físicas de los suelos	20
3.5. Propiedades físico-químicas de los suelos	28
3.6. Propiedades químicas de los suelos	33
3.7. Análisis multivariante	42
4. CONCLUSIONES	45
BIBLIOGRAFÍA	47
ANEXO I: DATOS ANALÍTICOS	49
ANEXO III MADAS TEMÁTICOS	52


1. INTRODUCCIÓN

El objetivo de este proyecto ha sido contribuir a la zonificación del área vitícola amparada bajo la Denominación de Origen (D.O.) Protegida de Alicante, centrándose en las comarcas del Alto y Medio Vinalopó. El término "zonificación" puede definirse como "Operación que organiza la distribución de un territorio en zonas y que fija para cada una de ellas el género y las condiciones de utilización del suelo. La mayor parte de los documentos de planificación proponen una zonificación: esquema director, plan de ocupación de los suelos, plan de exposición al ruido, plan de salvaguardia y revalorización, plan de ordenación de la zona..." (Vaudour, 2003).

Las principales aplicaciones de la zonificación se basan en la divulgación y la valoración del conocimiento del terruño en el seno de un área delimitada, coherentemente con los efectos reconocidos sobre la planta y el producto. Las aplicaciones de las zonificaciones pueden ser múltiples, abarcando todos los niveles de organización espacial o áreas concretas del sector vitivinícola. El terruño o terroir se define como la extensión de terreno que presenta ciertas características que la individualizan desde el punto de vista agronómico, debidas a sus cualidades físicas (relieve, clima, exposición, suelos) y a los cambios realizados por el hombre (Lebeau, 1969).

Los factores que explican el efecto del terruño conciernen a la ecofisiología vitícola, y tiene como objetivo entender el determinismo de la calidad vitivinícola (Figura 1). Los planteamientos de zonificación dan una orientación nueva mediante la problemática de la variabilidad espacial del viñedo. Por otra parte, los factores susceptibles de afectar a la calidad de la uva, y en especial, de explicar la presencia de un conjunto de grupos de calidad en una misma unidad de terruño, son principalmente los siguientes:

- Factores medioambientales
- Factores humanos, ligados sobre todo al tipo de cultivo y a la tecnología.
- Variabilidad espacial del conjunto de factores en juego, especialmente edáfico, litológico, y/o mesoclimático en el seno de una unidad global de terruño.

Figura 1. Esquema general del determinismo de la calidad vitivinícola (Vaudour, 2003).

De esto modo, el objetivo de la zonificación es mejorar la gestión de la producción y se aplica a (Vaudour, 2003):

- Nivel de la explotación y de las parcelas de la viña, la gestión agrovitícola.
- Nivel de unidades de producción, la gestión enológica.
- Nivel de denominación de origen, las gestiones patrimoniales y medioambientales.

2. GEOLOGÍA DE LA ZONA

La Denominación de Origen Protegida Alicante limita al este por el mar mediterráneo, siendo este uno de sus mayores influyentes. Al oeste por la sierra Oliva, que marca el límite entre las comarcas del Alto Vinalopó y la Meseta castellana en Albacete. Al norte por la provincia de Valencia separados por los macizos montañosos del Montgó y las sierras de Alfaro. Por la zona sur con las cañadas y zonas semi desérticas de Abanilla. Estas zonas se encuentran incluidas en la Cordillera Bética. La Cordillera Bética se formó durante el plegamiento alpino y queda incluida en el conjunto de cadenas alpinas que rodean el Mediterráneo occidental (conocido como Orógeno Perimediterráneo occidental). En función de la edad de las rocas que afloran y del grado de deformación que les afecta, en la Cordillera Bética se diferencian cuatro grandes unidades geológicas: las Zonas Externas, las Zonas Internas, el Complejo del Campo de Gibraltar y las Cuencas Neógeno-Cuaternarias (Vera, 1994, 2004).

En la DO Protegida de Alicante, de las grandes unidades anteriormente descritas están representadas ampliamente las Zonas Externas, especialmente el Prebético. Localmente aflora el Subbético y con carácter todavía más local existen pequeños afloramientos de las Zonas Internas (pertenecientes al Complejo Alpujárride), en las proximidades de Orihuela. Finalmente, los materiales más recientes ocupan las cuencas o depresiones neógeno-cuaternarias, entre las que destaca la del Bajo Segura(Figura 2) (Estévez y col., 2004).

Zonas externas

En estas zonas se diferencian dos dominios: Zona Prebética y Zona Subbética.

La Zona Prebética aflora al norte del paralelo de la ciudad de Alicante. Los términos más antiguos son los del Triásico, que afloran mayoritariamente en estructuras extrusivas (diapiros) en las que los materiales arcillosos ricos en sales perforan los términos más modernos situados sobre ellos. Los *diapiros* más significativos son los de *Pinoso* (Cabeçó de la Sal, desde donde se extraen salmueras que se utilizan en las salinas de Torrevieja) (Figura 3) y los localizados a lo largo del valle del Vinalopó, tales como el de *Villena-Sax* y el de *Sierra Solana-Benejama* (de La Torre y Pérez, 1993). Los siguientes términos, en edad, son los del Jurásico formados por rocas carbonatadas que afloran de manera muy reducida en los núcleos de antiformes o a favor de fallas con importante salto en vertical y en dirección (Cabeçó d'Or, Fontcalent, Puig Campana, etc.). Los materiales del Cretácico afloran ampliamente dando importantes relieves montañosos, como las sierras de Mariola, Serrella, *Salinas*, Aixorta, Alfaro, El Cid, Gelada, etc.

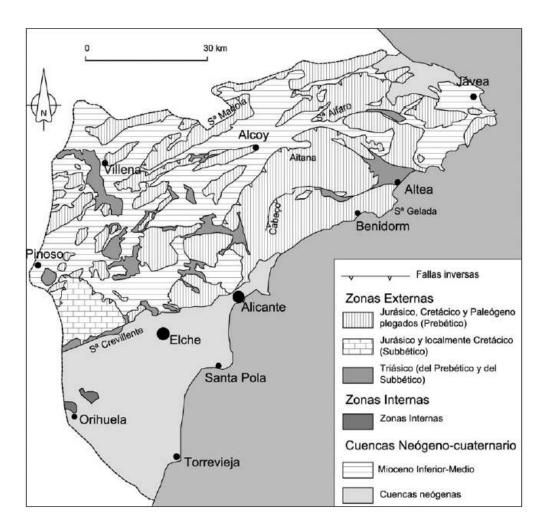
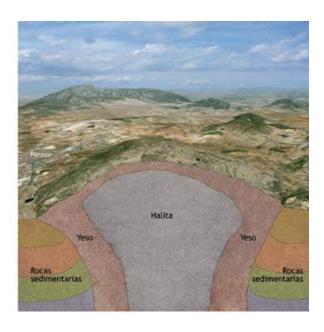



Figura 2. Mapa geológico de la provincia de Alicante (Estévez y col., 2004).

Figura 3. Diagrama interno del diapiro de Pinoso (http://www.senderosdealicante.com/geologicos/lugares/pinoso.html).

En la parte más meridional del Prebético las calizas organógenas depositadas en plataformas marinas someras no aparecen, ya que cambian a margas marinas pelágicas, de mayor profundidad, y semejantes a los términos del Subbético. En Agost, en estas facies pelágicas se localiza una capa oscura que marca el límite Cretácico-Terciario (hace 65 Ma), un nivel de referencia mundial a favor de la hipótesis del impacto de un gran meteorito. El Paleógeno destaca por el gran desarrollo de las calizas pararrecifales con Alveolinas y Nummulites que ocupan extensamente las cumbres de Sierra Aitana. En el Coto (norte de *La Algueña*) se explotan estas *calizas* como piedra ornamental que recibe el nombre comercial de *"cremamarfil"*. En áreas más meridionales estas calizas no afloran y en su lugar aparecen margas ricas en foraminíferos planctónicos, con intercalaciones de turbiditas.

Desde el punto de vista estructural, en el Prebético, las estructuras dominantes corresponden a pliegues, con algunas fallas asociadas. Entre los pliegues se encuentran El Cid-Penyes Monteses, Tossal Redó-Canteras de SantVicent del Raspeig, Cabeçó d'Or. Otras estructuras de importancia son las fallas normales y de salto en dirección de direcciones entorno a NW-SE, que retocan más tardíamente las cuencas intramontañosas de nuestra provincia, pudiendo incluso condicionar totalmente su morfología definitiva (*Falla de Biar-Castalla*, Falla de Alcoy, **Falla delValle del Vinalopó**).

La **Zona Subbética** o **Subbético** aflora exclusivamente al noroeste de Elche en las sierras de Crevillent, Algayat y Reclot, en las cuales aparecen esencialmente materiales del Mesozoico. La Zona Subbética comprende terrenos mesozoicos y terciarios de facies marinas que se diferenciaron paleo-geográficamente del Prebético, desarrollando sucesiones estratigráficas de características propias. El Triásico está representado por arcillas violáceas con abundantes yesos semejantes al Triásico del Prebético. El Jurásico está formado por dolomías en los términos más antiguos y calizas en el resto, que en diferentes niveles tienen faunas de ammonites. Todos estos materiales se depositaron en un alto fondo pelágico (calizas nodulosas y amplias lagunas estratigráficas). Algunas de estas rocas (*calizas nodulosas*) son explotadas en la *Sierra de Reclot*, al oeste de *La Romana*, como piedra ornamental que se conoce con el nombre comercial de *"Rojo Alicante"*. El Cretácico, mucho menos extenso en afloramiento, se caracteriza por una sedimentación pelágica relativamente profunda, representada por margas y calizas margosas con ammonites y calizas margosas con foraminíferos planctónicos.

Zonas Internas

Los afloramientos de las Zonas Internas Béticas incluidos en la provincia de Alicante pertenecen en su totalidad a las unidades inferiores poco metamórficas del Complejo Alpujárride. Están constituidos mayoritariamente por materiales de edad Triásico Inferior y Medio de facies someras. Hacia la base de la sucesión aparecen filitas y cuarcitas en escasos asomos de extensión muy reducida, coronadas por una serie potente de calizas, dolomías, que originan los relieves montañosos de las sierras por ejemplo de Orihuela y otros pequeños resaltes dispersos, rodeados por los materiales neógeno-cuaternarios de la cuenca del Bajo Segura.

Cuencas Neógeno-Cuaternarias

Con esta denominación se agrupa un conjunto de cuencas dispersas por toda la Cordillera Bética. Se pueden separar, por un lado, las que fueron rellenas por sedimentos marinos de edad Mioceno Inferior y Medio simultáneos a la principal etapa de colisión continental y, por otro, las que fueron rellenas por sedimentos marinos y continentales de edad Mioceno Superior a Cuaternario.

En el Mioceno Inferior y Medio se producen cuencas muy estrechas y alargadas, según la "dirección bética", que forman parte del Estrecho Nordbético que comunicaba el Atlántico y el Mediterráneo. Estas cuencas se convierten en lugar de depósito de materiales marinos de plataforma y pelágicos. Presenta un tipo de litología muy singular, conocida en levante como *Tap*, constituidas por margas blancas silíceas ricas en foraminíferos planctónicos y nanoplancton. Estos sedimentos (*Tap*) son los depósitos simultáneos a la principal etapa de colisión continental y, por ello, en el seno de las mismas, localmente aparecen bloques de rocas de materiales más antiguos, producto de la destrucción parcial de los relieves montañosos que se estaban formando durante este tiempo por efectos del plegamiento, de la fracturación o del diapirismo. Ejemplos de estas *cuencas* se sitúan en las alineaciones de *Villena-Agres*, Alcoi-Tárbena, *Castalla-Carrasqueta* y otras más reducidas como las de Finestrat y Guadalest. Hacia el comienzo del Mioceno Superior se produce la progresiva desconexión entre el Mediterráneo y el Atlántico y el relleno acaba por hacerse continental.

En relación con las cuencas del margen mediterráneo la principal característica que permite diferenciarlas de las anteriores es, aparte de su posición francamente abierta hacia el mar, la existencia de depósitos marinos entre el Mioceno Superior y el Plioceno. Incluso, en la franja litoral aflora Pleistoceno de carácter marino. Entre ellas la más importante es la Cuenca de Murcia-Alicante que se extiende al sur de una línea recta muy marcada, visible en imágenes de satélite y en los mapas geológicos, que corresponde a una gran falla denominada en la nomenclatura geológica como Falla de Crevillente. Al norte de la Falla de Crevillente aparece la *Cuenca del Vinalopó*, que representaría un brazo de mar hacia las cuencas interiores durante el Mioceno Superior. En ella afloran *depósitos marinos* de esa edad (Agost, Orito, Elda, *Monòvar*,

Villena) y depósitos continentales más recientes correspondientes a la retirada definitiva del mar hacia sectores litorales situados al sur de la falla. Finalmente, junto a la costa mediterránea, en el límite con la provincia de Valencia en la que ocupa su mayor extensión, aparece la llanura costera septentrional como apéndice meridional de la Cuenca neógena de Valencia, a caballo entre las cordilleras Bética e Ibérica. En ella los materiales que afloran son más recientes, mayoritariamente del Cuaternario.

3. DATOS EDAFOLÓGICOS

3.1. Situación y descripción de las parcelas

Para este estudio se seleccionaron 117parcelas de muestreo distribuidas en diferentes zonas de las Comarcas del Vinalopó-Alto y del Vinalopó-Medio, en la proporción que se muestra en la tabla 1.

Tabla 1. Zonas, bodegas o viticultor y parcelas muestreadas en las comarcas del Vinalopó-Alto y Vinalopó-Medio.

ZONA	BODEGA	PARCELAS MUESTREADAS
	Bodegas Sierra Salinas, S.L.	
Carretera de El Puerto-Salinas	Bodega Francisco Gomez Hdez.	20
	Bod. Coop. "Ntra. Sra. de las Virtudes"	
Carretera de Yecla	Bodegas Enrique Mendoza, S.L.	16
Carretera de Yecia	Bod. Coop. "Ntra. Sra. de las Virtudes"	10
Benajama	Bodega Coop. "Divina Aurora"	5
Say Castalla Daraia La Tarra	Bodegas BOCOPA	10
Sax-Castalla- Paraje La Torre	Viticultor-Antonio Martínez Lorente	10
Almansa-Los Almendros	Bod. Coop. "Ntra. Sra. de las Virtudes"	10
Pinoso	Bodega Coop. "Pinoso"	21
Monovar	Bodega Sta. Catalina del Mañán "	13
La Algueña-Romana	Bodega Coop. "Algueña	17
Novelda	Bodega Heretat de Cesilia	5

La descripción de las parcelas muestreadas respecto a código de la parcela, coordenadas UTM del centroide de la parcela, zona, municipio, polígono, parcela, bodega o viticultor, variedad-sistema de plantación, superficie, altitud y pendiente se muestra en las tablas2 y 3. También, la localización de estas parcelas se muestra en las figuras4 y 5.

Tabla 2. Situación y descripción de las parcelas muestreadas en la Comarca del Vinalopó-Alto

		das UTM del roide	_		- 4			Variedad	Superficie	Altitud	Pendiente
Código	х	Υ	Zona	Municipio	Polígono	Parcela	Bodega-Viticultor	Sistema plantación	(m²)	(msnm)	(%)
1	681937,38	4272852,41	Carretera El Puerto-Salinas	Villena	38	30	Bod. Coop. "Ntra. Sra. de las Virtudes"	Monastrell-V	36448	505,4	2,2
2	681299,28	4272548,78	Carretera El Puerto-Salinas	Villena	21	29	Bod. Coop. "Ntra. Sra. de las Virtudes"	Monastrell-E	69581	514,9	11,0
3	681588,81	4272519,09	Carretera El Puerto-Salinas	Villena	38	24	Bod. Coop. "Ntra. Sra. de las Virtudes"	Cabernet Sauvignon-E	96335	511,0	10,3
4	681481,78	4271818,63	Carretera El Puerto-Salinas	Villena	38	52	Bod. Coop. "Ntra. Sra. de las Virtudes"	Merlot-E	159908	532,1	1,5
5	672867,78	4266768,33	Carretera El Puerto-Salinas	Villena	30	27	Bodegas Sierra Salinas, S.L.	Monastrell-V	22043	666,2	0,2
6	673131,22	4266691,18	Carretera El Puerto-Salinas	Villena	31	11	Bodegas Sierra Salinas, S.L.	Monastrell-V	26294	658,2	6,9
7	673275,95	4266568,87	Carretera El Puerto-Salinas	Villena	31	12	Bodegas Sierra Salinas, S.L.	Garnacha Tintorera-V	55679	669,3	8,7
8	679497,06	4272303	Carretera El Puerto-Salinas	Villena	22	49	Bodega Francisco Gomez Hdez.	Monastrell-E	58677	547,3	16,6
9	679293,76	4272733,89	Carretera El Puerto-Salinas	Villena	22	58	Bodega Francisco Gomez Hdez.	Syrah-E	113830	559,5	20,3
10	679401,3	4272440,87	Carretera El Puerto-Salinas	Villena	22	58	Bodega Francisco Gomez Hdez.	Merlot-E	53427	548,7	11,1
11	679819,21	4273077,29	Carretera El Puerto-Salinas	Villena	22	58	Bodega Francisco Gomez Hdez.	Sauvignon Blanc-E	58574	573,2	5,5
12	679836,74	4272841,29	Carretera El Puerto-Salinas	Villena	22	58	Bodega Francisco Gomez Hdez.	Petit Verdot-E	58868	564,0	5,9
13	677472,46	4272028,02	Carretera El Puerto-Salinas	Villena	22	65	Bodega Francisco Gomez Hdez.	Monastrell-V	41819	565,0	4,7
14	677065,7	4272116,67	Carretera El Puerto-Salinas	Villena	22	68	Bodega Francisco Gomez Hdez.	Monastrell-V	52665	579,6	3,3
15	672736,87	4266395,8	Carretera El Puerto-Salinas	Villena	31	9	Bodegas Sierra Salinas, S.L.	Cabernet Sauvignon-E	29832	674,5	2,1
16	672713,87	4266664,91	Carretera El Puerto-Salinas	Villena	30	27	Bodegas Sierra Salinas, S.L.	Garnacha Tintorera-E	8275	665,0	6,6
17	675589,69	4269700,98	Carretera El Puerto-Salinas	Villena	27	77	Bod. Coop. "Ntra. Sra. de las Virtudes"	Monastrell-V	69158	613,5	6,8
18	675679,23	4269499,02	Carretera El Puerto-Salinas	Villena	29	6	Bod. Coop. "Ntra. Sra. de las Virtudes"	Monastrell-V	59818	607,0	9,8
19	676443,3	4270057,56	Carretera El Puerto-Salinas	Villena	27	71	Bod. Coop. "Ntra. Sra. de las Virtudes"	Monastrell-V	85837	599,2	3,9
20	677416,01	4270659,09	Carretera El Puerto-Salinas	Villena	28	47	Bod. Coop. "Ntra. Sra. de las Virtudes"	Monastrell-V	136278	585,4	9,2
21	678327,89	4279817,37	Carretera de Yecla	Villena	5	17	Bod. Coop. "Ntra. Sra. de las Virtudes"	Monastrell-V	76327	517,9	15,5
22	678455,53	4279290,56	Carretera de Yecla	Villena	5	28	Bod. Coop. "Ntra. Sra. de las Virtudes"	Petit Verdot-E	35593	504,7	14,7
23	678676,24	4279300,23	Carretera de Yecla	Villena	5	26	Bod. Coop. "Ntra. Sra. de las Virtudes"	Cabernet Sauvignon-E	34449	499,0	10,8
24	678722,32	4279359,19	Carretera de Yecla	Villena	5	26	Bod. Coop. "Ntra. Sra. de las Virtudes"	Monastrell-E	33562	498,0	5,0
25	677456,03	4278544,27	Carretera de Yecla	Villena	4	17	Bodegas Enrique Mendoza, S.L.	Cabernet Sauvignon-E	17275	512,6	9,2
26	678297,9	4278088,03	Carretera de Yecla	Villena	19	16	Bod. Coop. "Ntra. Sra. de las Virtudes"	Monastrell-V	12569	509,3	4,0
27	678217,78	4278004,26	Carretera de Yecla	Villena	19	15	Bodegas Enrique Mendoza, S.L.	Pinot Noir-E	35645	508,5	14,2
28	677735,79	4277910,94	Carretera de Yecla	Villena	19	13	Bodegas Enrique Mendoza, S.L.	Cabernet Sauvignon-E	88884	504,0	8,5
29	677482,02	4277565,46	Carretera de Yecla	Villena	19	110	Bodegas Enrique Mendoza, S.L.	Petit Verdot-E	53486	507,0	2,2
30	677242,48	4277520,78	Carretera de Yecla	Villena	19	108	Bod. Coop. "Ntra. Sra. de las Virtudes"	Monastrell-V	37970	509,0	1,7
31	677496,43	4277324,1	Carretera de Yecla	Villena	19	93	Bod. Coop. "Ntra. Sra. de las Virtudes"	Cabernet Sauvignon-E	36498	508,0	2,6
32	677812,63	4277043,14	Carretera de Yecla	Villena	19	89	Bod. Coop. "Ntra. Sra. de las Virtudes"	Syrah-E	60489	508,0	5,9
33	676066,4	4275539,14	Carretera de Yecla	Villena	24	73	Bodegas Enrique Mendoza, S.L.	Monastrell-V	41027	580,7	3,2
34	677542,55	4278424,88	Carretera de Yecla	Villena	4	17	Bodegas Enrique Mendoza, S.L.	Chardonnay-E	39701	509,0	3,9
35	674302,29	4276333,94	Carretera de Yecla	Villena	25	47	Bod. Coop. "Ntra. Sra. de las Virtudes"	Monastrell-V	50694	544,6	10,6
36	674006,88	4276202,09	Carretera de Yecla	Villena	25	47	Bod. Coop. "Ntra. Sra. de las Virtudes"	Monastrell-V	91543	548,1	11,9

Tabla 2. Situación y descripción de las parcelas muestreadas en la Comarca del Vinalopó-Alto (continuación)

Código		las UTM del roide	Zona	Municipio	Polígono	Parcela	Bodega-Viticultor	Variedad	Superficie	Altitud	Pendiente
coulgo	х	Υ	2018	Withinitiple	rollgollo	raiceia	Doucga-Vincultor	Sistema plantación	(m²)	(msnm)	(%)
37	692955,09	4284943,83	Benajama	Campo de Mirra	5	10	Bodega Coop. "Divina Aurora"	Garnacha Tinta-E	53544	573,0	5,4
38	695039,75	4287057,85	Benajama	Benejama	8	196	Bodega Coop. "Divina Aurora"	Monastrell-E	47526	607,8	8,7
39	698569,29	4288926,35	Benajama	Bañeres	1	86	Bodega Coop. "Divina Aurora"	Monastrell-V	78361	662,2	3,9
40	698152,94	4286654,22	Benajama	Biar	1	14	Bodega Coop. "Divina Aurora"	Monastrell-E	73958	630,7	0,9
41	695584,14	4285421,25	Benajama	Biar	17	58	Bodega Coop. "Divina Aurora"	Merlot-E	10174	594,5	5,0
42	691893,85	4268042,96	Sax-Castalla-Paraje La Torre	Sax	23	47	Bodegas BOCOPA	Monastrell-V	16757	506,0	2,3
43	692507,09	4269819,01	Sax-Castalla-Paraje La Torre	Sax	21	88	Bodegas BOCOPA	Monastrell-E	15746	540,4	15,9
44	691181,58	4268379,02	Sax-Castalla-Paraje La Torre	Sax	17	79	Viticultor-Antonio Martínez Lorente	Monastrell-V	14584	490,3	5,6
45	691355,29	4268253,34	Sax-Castalla-Paraje La Torre	Sax	17	78	Viticultor-Antonio Martínez Lorente	Syrah-E	10597	490,0	5,4
46	691452,63	4268298,2	Sax-Castalla-Paraje La Torre	Sax	17	78	Viticultor-Antonio Martínez Lorente	Garnacha-E	12250	495,8	2,1
47	692891,33	4267298,03	Sax-Castalla-Paraje La Torre	Sax	23	106	Bodegas BOCOPA	Merlot-E	49475	523,0	1,7
48	690580,59	4271745,1	Sax-Castalla-Paraje La Torre	Sax	1	10	Bodegas BOCOPA	Monastrell-E	33484	555,0	0,8
49	707887,4	4274836,36	Sax-Castalla-Paraje La Torre	Castalla	7	150	Bodegas BOCOPA	Cabernet Sauvignon-E	9282	618,8	9,5
50	704045,48	4271119,31	Sax-Castalla-Paraje La Torre	Castalla	17	93	Bodegas BOCOPA	Monastrell-V	42320	655,1	15,9
51	710514,41	4269932,34	Sax-Castalla-Paraje La Torre	Tibi	3	51	Bodegas BOCOPA	Monastrell-V	77716	588,1	23,5
52	683730,07	4283703,89	Almansa-Los Almendros	Villena	61	8	Bod. Coop. "Ntra. Sra. de las Virtudes"	Monastrell-V	64529	522,6	18,7
53	683333,25	4283892,55	Almansa-Los Almendros	Villena	61	7	Bod. Coop. "Ntra. Sra. de las Virtudes"	Monastrell-E	39539	523,0	6,8
54	683104,13	4283705,7	Almansa-Los Almendros	Villena	61	7	Bod. Coop. "Ntra. Sra. de las Virtudes"	Sauvignon Blanc-E	101547	517,4	7,4
55	683038,17	4283985,71	Almansa-Los Almendros	Villena	61	1	Bod. Coop. "Ntra. Sra. de las Virtudes"	Garnacha-E	74762	526,6	3,8
56	682812,24	4284036,2	Almansa-Los Almendros	Villena	61	1	Bod. Coop. "Ntra. Sra. de las Virtudes"	Macabeo-V	62203	525,6	2,5
57	683083,55	4284485,87	Almansa-Los Almendros	Villena	61	1	Bod. Coop. "Ntra. Sra. de las Virtudes"	Syrah-E	77446	544,6	1,8
58	683081,3	4284856,03	Almansa-Los Almendros	Villena	61	1	Bod. Coop. "Ntra. Sra. de las Virtudes"	Merlot-E	56299	555,4	6,3
59	682327,33	4283700,17	Almansa-Los Almendros	Villena	12	6	Bod. Coop. "Ntra. Sra. de las Virtudes"	Monastrell-V	69118	507,2	5,5
60	681794,79	4284129,66	Almansa-Los Almendros	Campo de Mirra	11	22	Bod. Coop. "Ntra. Sra. de las Virtudes"	Monastrell-E	69113	509,3	4,8
61	681993,64	4284201,87	Almansa-Los Almendros	Benejama	11	23	Bod. Coop. "Ntra. Sra. de las Virtudes"	Monastrell-V	11049	515,2	20,1

Tabla 3. Situación y descripción de las parcelas muestreadas en la Comarca del Vinalopó-Medio

		das UTM del troide			Polígon			Variedad	Superficie	Altitud	Pendiente
Código	х	Υ	Zona	Municipio	0	Parcela	Bodega-Viticultor	Sistema plantación	(m²)	(msnm)	(%)
62	672842,63	4252667,67	Pinoso	Pinoso	12	124	Bodega Cooperativa de Pinoso	Monastrell-V	15606	590,0	9,9
63	673000,61	4252718,34	Pinoso	Pinoso	12	97	Bodega Cooperativa de Pinoso	Monastrell-V	12629	590,0	9,3
64	674386,52	4251842,50	Pinoso	Pinoso	15	214 (1)	Bodega Cooperativa de Pinoso	Monastrell-V	39818	617,0	1,4
65	674535,28	4251970,01	Pinoso	Pinoso	15	214 (2,3)	Bodega Cooperativa de Pinoso	Monastrell-E	67240	614,5	1,4
66	674400,97	4252433,79	Pinoso	Pinoso	15	112	Bodega Cooperativa de Pinoso	Merseguera-V	16698	617,0	7,8
67	674927,78	4253738,10	Pinoso	Pinoso	15	39	Bodega Cooperativa de Pinoso	Garnacha Tintorera-V	28219	635,0	14,9
68	674571,98	4253971,67	Pinoso	Pinoso	15	26	Bodega Cooperativa de Pinoso	Garnacha Tintorera-V	54766	610,0	18,3
69	674916,97	4254748,64	Pinoso	Pinoso	8	123	Bodega Cooperativa de Pinoso	Monastrell-V	10484	590,0	5,0
70	673867,92	4255330,75	Pinoso	Pinoso	8	71	Bodega Cooperativa de Pinoso	Garnacha Tintorera-E	26532	609,0	5,3
71	673591,05	4255380,07	Pinoso	Pinoso	8	68	Bodega Cooperativa de Pinoso	Monastrell-E	74865	615,0	4,2
72	670335,10	4254578,43	Pinoso	Pinoso	27	8	Bodega Cooperativa de Pinoso	Syrah-E	42175	604,0	1,9
73	670133,92	4254643,34	Pinoso	Pinoso	27	58	Bodega Cooperativa de Pinoso	Tempranillo-E	33277	608,0	5,9
74	668398,27	4253743,44	Pinoso	Pinoso	29	197	Bodega Cooperativa de Pinoso	Monastrell-E	22069	630,0	3,6
75	668895,37	4253583,34	Pinoso	Pinoso	29	72	Bodega Cooperativa de Pinoso	Garnacha Tintorera-E	67926	614,0	7,7
76	668351,37	4252850,20	Pinoso	Pinoso	29	95	Bodega Cooperativa de Pinoso	Merlot-E	45418	610,0	5,3
77	670052,33	4250927,16	Pinoso	Pinoso	26	81	Bodega Cooperativa de Pinoso	Tempranillo-E	10395	560,0	9,5
78	670051,36	4251167,97	Pinoso	Pinoso	26	75	Bodega Cooperativa de Pinoso	Monastrell-V	33881	560,0	10,7
79	669571,99	4251767,10	Pinoso	Pinoso	26	115	Bodega Cooperativa de Pinoso	Monastrell-E	37312	575,0	3,5
80	669234,92	4249978,36	Pinoso	Pinoso	24	165	Bodega Cooperativa de Pinoso	Monastrell-V	21209	572,0	0,8
81	668350,93	4249185,10	Pinoso	Pinoso	22	42	Bodega Cooperativa de Pinoso	Monastrell-E	36874	590,0	4,5
82	670807,69	4248072,44	Pinoso	Pinoso	19	365	Bodega Cooperativa de Pinoso	Monastrell-E	12786	543,8	2,1
83	680925,98	4255002,19	Monóvar	Monóvar	37	54	Bodega Sta. Catalina del Mañán	Moscatel-E	138671	504,0	1,3
84	681215,23	4255508,21	Monóvar	Monóvar	37	18	Bodega Sta. Catalina del Mañán	Chardonay-E	105618	504,0	1,2
85	682673,08	4258664,40	Monóvar	Monóvar	15	38	Bodega Sta. Catalina del Mañán	Merlot-E	20923	515,0	4,5
86	680620,80	4254869,50	Monóvar	Monóvar	37	62	Bodega Sta. Catalina del Mañán	Macabeo-E	19816	510,0	1,3
87	680654,37	4255894,37	Monóvar	Monóvar	9	123	Bodega Sta. Catalina del Mañán	Garnacha Tintorera-E	48085	514,0	1,4
88	682681,98	4258790,20	Monóvar	Monóvar	15	29	Bodega Sta. Catalina del Mañán	Chardonnay-E	13333	516,0	5,2
89	682103,75	4258936,60	Monóvar	Monóvar	15	11	Bodega Sta. Catalina del Mañán	Cabernet Sauvignon-E	56223	510,0	2,6
90	678142,68	4258484,52	Monóvar	Monóvar	5	109	Bodega Sta. Catalina del Mañán	Monastrell-E	6174	577,0	6,4
91	678639,76	4256825,07	Monóvar	Monóvar	8	250	Bodega Sta. Catalina del Mañán	Monastrell-E	2443	560,0	6,7
92	678411,80	4256842,48	Monóvar	Monóvar	8	255	Bodega Sta. Catalina del Mañán	Monastrell-E	3507	560,0	14,9
93	678219,54	4256636,68	Monóvar	Monóvar	8	3	Bodega Sta. Catalina del Mañán	Monastrell-V	12864	550,0	11,7
94	681007,98	4257251,98	Monóvar	Monóvar	16	18	Bodega Sta. Catalina del Mañán	Merlot-E	3444	504,0	1,3
95	681808,02	4257315,89	Monóvar	Monóvar	15	173	Bodega Sta. Catalina del Mañán	Petit Verdot-E	21045	500,8	0,7

Tabla 3. Situación y descripción de las parcelas muestreadas en la Comarca del Vinalopó-Medio (continuación)

Código		das UTM del troide	Zona	Municipio	Polígono	Parcela	Bodega-Viticultor	Variedad	Superficie	Altitud	Pendiente
Courgo	х	Υ	20114	Municipio	Poligorio	Parceia	Bouega-viticuitor	Sistema plantación	(m²)	(msnm)	(%)
96	677582,86	4242175,95	La Algueña-Romana	Orihuela	1	80	Bod. Coop. "Algueña"	Monastrell-V	7614	487,0	7,4
97	674747,93	4246411,79	La Algueña-Romana	La Algueña	3	37	Bod. Coop. "Algueña"	Monastrell-V	13415	562,0	6,1
98	676945,23	4246215,83	La Algueña-Romana	La Algueña	4	141	Bod. Coop. "Algueña"	Monastrell-V	5500	617,5	12,2
99	675243,23	4245240,42	La Algueña-Romana	La Algueña	6	379	Bod. Coop. "Algueña"	Monastrell-V	28917	520,0	6,1
100	677624,06	4240684,08	La Algueña-Romana	Orihuela	1	203	Bod. Coop. "Algueña"	Monastrell-V	11771	443,0	8,1
101	675153,29	4244461,77	La Algueña-Romana	La Algueña	6	317	Bod. Coop. "Algueña"	Messeguera-E	5346	493,4	5,3
102	673457,79	4245362,40	La Algueña-Romana	La Algueña	6	83	Bod. Coop. "Algueña"	Monastrell-V	10531	503,5	3,2
103	672515,89	4245640,31	La Algueña-Romana	La Algueña	1	134	Bod. Coop. "Algueña"	Messeguera-V	17460	508,6	1,3
104	670203,49	4248642,54	La Algueña-Romana	Pinoso	23	146	Bod. Coop. "Algueña"	Garnacha Tinta-V	10590	555,0	2,4
105	672058,32	4245929,69	La Algueña-Romana	La Algueña	1	277	Bod. Coop. "Algueña"	Monastrell-V	51982	510,0	1,8
106	670968,06	4247382,27	La Algueña-Romana	Pinoso	19	331	Bod. Coop. "Algueña"	Garnacha Tinta-E	11160	556,0	3,4
107	670838,07	4247374,20	La Algueña-Romana	Pinoso	19	353	Bod. Coop. "Algueña"	Garnacha Tinta-E	6909	553,5	2,3
108	670842,45	4247429,00	La Algueña-Romana	Pinoso	19	355	Bod. Coop. "Algueña"	Garnacha Tinta-E	2753	553,5	1,9
109	673518,53	4245719,98	La Algueña-Romana	La Algueña	6	61	Bod. Coop. "Algueña"	Monastrell-V	7696	510,0	3,4
110	667501,40	4252838,77	La Algueña-Romana	Pinoso	29	123	Bod. Coop. "Algueña"	Monastrell-E	23135	634,0	10,0
111	672451,12	4247261,48	La Algueña-Romana	La Algueña	2	401	Bod. Coop. "Algueña"	Monastrell-V	17481	537,0	9,9
112	673695,31	4245282,75	La Algueña-Romana	La Algueña	6	129	Bod. Coop. "Algueña"	Messeguera-V	22297	507,0	3,3
113	693615,18	4253467,09	Novelda	Novelda	12	5	Bod. Heretat de Cesilia	Monastrell-E	10600	280,0	4,4
114	693416,76	4253872,08	Novelda	Novelda	12	5	Bod. Heretat de Cesilia	Syrah-E	10153	290,0	5,0
115	693631,87	4253690,29	Novelda	Novelda	12	5	Bod. Heretat de Cesilia	Cabernet Sauvignon-E	21710	285,0	2,6
116	693765,90	4252965,38	Novelda	Novelda	13	74	Bod. Heretat de Cesilia	Monastrell-V	20778	265,0	2,0
117	693960,80	4252983,92	Novelda	Novelda	13	95	Bod. Heretat de Cesilia	Moscatel grano menudo-E	19100	270,0	2,1

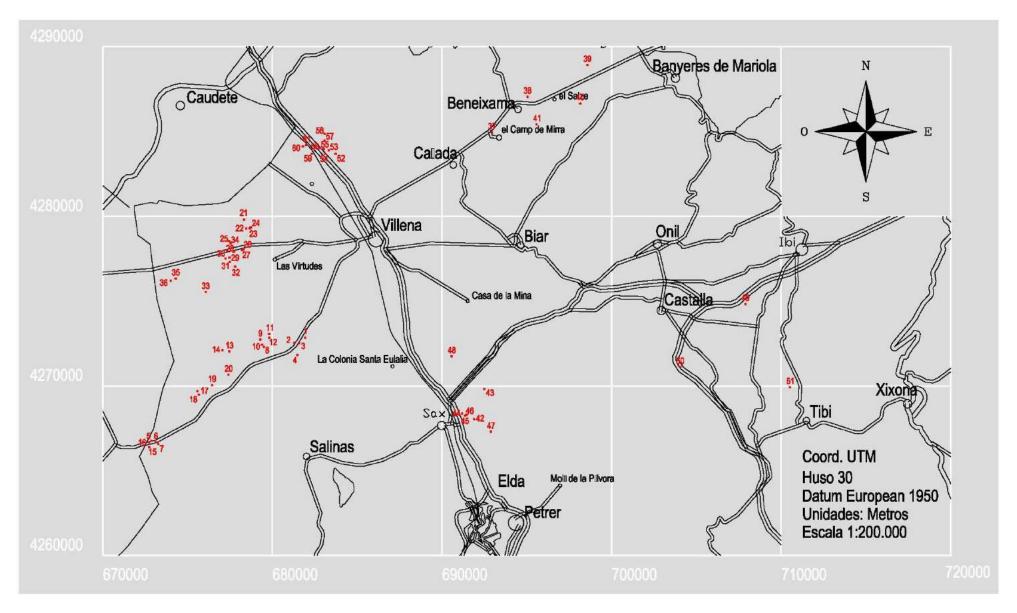


Figura 4.Localización de las parcelas muestreadas de la Comarca del Vinalopó-Alto.

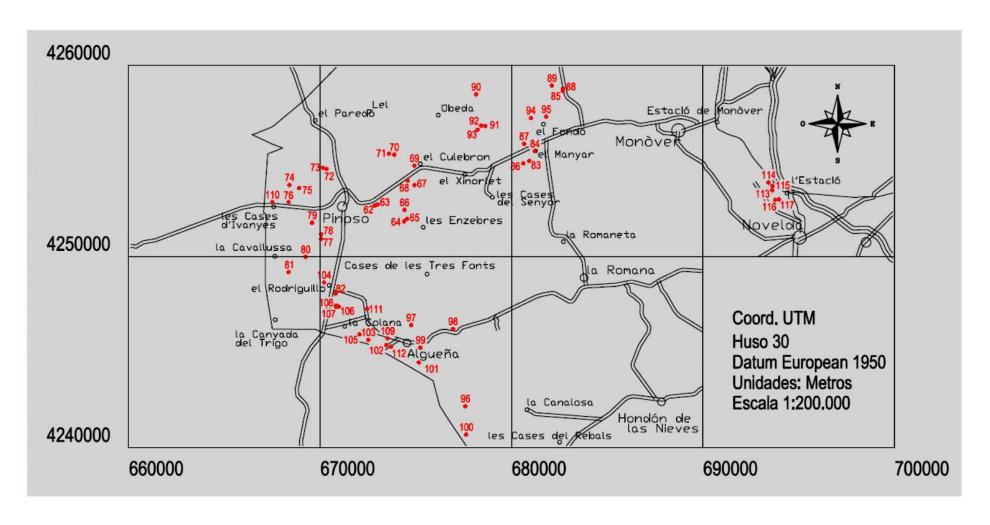


Figura 5. Localización de las parcelas muestreadas de la Comarca del Vinalopó-Medio.

3.2. Muestreo y métodos analíticos

Muestreo

Para llevar a cabo el muestreo de suelo, cada parcela se dividió en zonas de características uniformes y de superficie inferior a 2 hectáreas. Se tomó el número de submuestras de suelo necesarias en cada zona, para que la muestra fuera lo más representativa posible de toda esta zona. Todas las submuestras tomadas se mezclaron bien en un recipiente y posteriormente se tomaron de 2 a 3 kg de suelo, que se metieron en una bolsa bien cerrada y etiquetada. La toma de muestra se hizo a dos profundidades denominadas superficie y profundidad, pero la mayoría de los parámetros se determinaron en la superficie:

✓ Superficie: 0 - 30 cm

✓ Profundidad:30 - 60 cm

En este informe se presentan los datos determinados en superficie.

Métodos analíticos

En las muestras de suelos tomadas se determinaron los siguientes parámetros: pH, conductividad eléctrica y los porcentajes de elementos gruesos, materia orgánica, caliza activa, carbonato total equivalente, arena, limo, arcilla y fracción estable, así como, la capacidad de intercambio catiónico, la textura y el contenido de carbono orgánico y de yeso. Todas las determinaciones se hicieron por triplicado. Los métodos analíticos seguidos son los que se resumen a continuación.

Preparación de la muestra

Las muestras de suelo se extendieron en bandejas de plástico para que se secase a temperatura ambiente y una vez seca se tamizó (\emptyset < 2 mm).

Elementos gruesos

El porcentaje de elementos gruesos ($\emptyset > 2$ mm) se determinó pesando los materiales que quedaron en el tamiz, después de tamizar una muestra de suelo de peso conocido a través de un tamiz de $\emptyset = 2$ mm.

Estabilidad de agregados

La estabilidad de agregados se determinó en la fracción de suelo entre 1-2 mm mediante un aparato automático. El cálculo de este parámetro se realizó a partir de la fracción de suelo estable al agua de forma natural o una vez destruidos los agregados mediante una disolución dispersante de hexametafosofato de sodio. Para ello se empleó la siguiente ecuación.

Fracción estable (%) = $Pext/(Pext + Pw) \times 100$

donde,

Pext = Fracción de suelo no estable una vez que se han destruido los agregados mediante una disolución dispersante.

Pw = Fracción de suelo natural no estable.

<u>Granulometría</u>

La granulometría se determinó mediante el método del densímetro Bouyoucos. Este método, se basa en la relación existente entre la concentración de partículas en una suspensión acuosa y la densidad de dicha suspensión a una temperatura y en un tiempo dado. Midiendo la densidad de la suspensión a diferentes tiempos de sedimentación, se determina la distribución de partículas según tamaños.

La concentración de sólidos totales en suspensión (g/L), indicada por la escala del densímetro a los cuarenta segundos después de la agitación, corresponde a partículas de diámetro $< 20~\mu m$ (arcilla + limo) y a las dos horas corresponde a partículas de diámetro $< 2~\mu m$ (arcilla) (Moreno-Caselles y col., 2003).

Textura

Para la determinación de la clase textural se utilizó el diagrama triangular de texturas (criterio USDA). En este diagrama se representan los porcentajes de las fracciones granulométricas, arena, arcilla y limo en los lados de un triángulo equilátero, siguiendo el sentido de las agujas del reloj (Figura 6). Cada lado del triángulo queda dividido de 0 a 100 y en ellos se representa los porcentajes de cada

fracción granulométrica. Trazando paralelas desde estos puntos al lado anterior, las líneas se cruzan en una zona o punto que corresponde a una clase textural (Moreno-Caselles y col., 2003).

<u>pH</u>

La determinación del pH de un suelo se basa en la medida de la diferencia de potencial existente entre un electrodo de vidrio y el electrodo de referencia calomelanos (Hg₂Cl₂ (sat), KCl(xF)/Hg) sumergidos en una misma disolución. Esta diferencia de potencial es función lineal de la actividad de los iones hidrógeno presentes en la muestra problema a una temperatura dada.

En un suelo tamizado a 2 mm, la medida del pH actual se realiza en la suspensión suelo-agua desionizada con una relación de 1:2,5 (p/v) (MAPA, 1994).

Conductividad eléctrica

La conductividad eléctrica de un extracto acuoso es la aptitud que presenta éste para transmitir la corriente eléctrica. La conductividad depende de la actividad e iones disueltos y de la temperatura a la que se realiza la medida. Para medir la conductividad se hace uso de un puente de Wheatstone y una célula de conductividad apropiada, comparando a la misma temperatura, la resistencia eléctrica de la muestra y la de una disolución estándar de cloruro potásico.

En un suelo tamizado a 2 mm, la medida de la conductividad eléctrica. se realiza en el extracto acuoso, obtenido por filtración de la suspensión suelo-agua desionizada con una relación 1:5 (p/v), previa agitación de la muestra durante 30 minutos (MAPA, 1994).

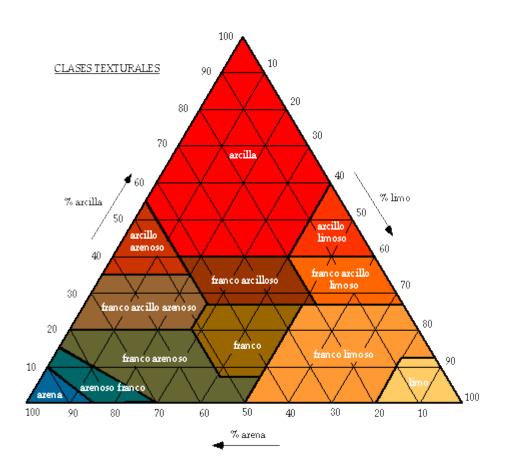


Figura 6. Diagrama triangular de texturas

Carbonato cálcico total equivalente

El concepto de carbonato cálcico total equivalente hace referencia al contenido total de carbonatos del suelo (CaCO₃, MgCO₃, Na₂CO₃, etc.) expresado como porcentaje de carbonato cálcico, por ser la especie más abundante en los suelos, debido a su baja solubilidad.

Este método se basa en la determinación gaseométrica del dióxido de carbono desprendido por la acción del ácido clorhídrico sobre los carbonatos del suelo. Para la medida de este gas se utiliza un calcímetro Bernard, que permite la determinación volumétrica en condiciones atmosféricas. Se realizan determinaciones análogas con carbonato cálcico puro, relacionando así los volúmenes de dióxido de carbono desprendidos por el carbonato cálcico y por el suelo (MAPA, 1994).

Caliza activa

La caliza activa se determina mediante su extracción con oxalato amónico, dando un precipitado de oxalato de calcio. El oxalato de amonio en exceso, que no ha

reaccionado con la caliza activa del suelo, se determina mediante su valoración con KMnO₄ en caliente (MAPA, 1994).

Carbono oxidable

La determinación del carbono oxidable del suelo se basa en la oxidación parcial del carbono con dicromato potásico en medio ácido sulfúrico. El exceso de dicromato que no ha reaccionado se determina por valoración con sulfato de amonio y hierro (II) hexahidratado (sal de Mohr), utilizando ferroína como indicador, método Walkley-Black, (1934) modificado por Yeomans y Bremner (1989).

Materia orgánica y carbono orgánico

El contenido de materia orgánica se calcula multiplicando el porcentaje de carbono orgánico por el coeficiente de Van Bemmelen (1,724). Para el cálculo del porcentaje de carbono orgánico se multiplica el porcentaje de carbono oxidable por el factor de recuperación de la técnica seguida, que en este caso es de 1,29 (MAPA, 1994).

Carbono orgánico (%) = Carbono oxidable x 1,29

Materia orgánica (%) = Carbono orgánico (%) x 1,724

Yeso

La determinación de yeso se realizó mediante una turbidimetría en el extracto acuoso1:5 (p/v), empleando como reactivo precipitante el BaCl₂ y la goma arábiga como coloide protector (Abrisqueta y col.,1962).

Capacidad de intercambio catiónico

La determinación de la capacidad de intercambio catiónico se basó en la saturación del suelo con sodio y su posterior medida, mediante fotometría de llama, tras desplazamiento con acetato de amonio (MAPA, 1994).

3.3. Métodos estadísticos

En los suelos muestreados, se realizó un análisis de la varianza de una vía (ANOVA), para comprobar si existían diferencias estadísticamente significativas entre los valores medios de cada parámetro estudiado entre las distintitas zonas de estudio del Vinalopó-Alto. En dicho ANOVA el factor considerado como independiente fue la zona. En el caso en el que la F-ANOVA mostró cierta significación, se empleó la prueba Tukey-b como prueba post-hoc para evaluar las diferencias entre las medias específicas, mostrándose en los resultados mediante el empleo de letras para una probabilidad del 95% (P < 0,05).

Por otra parte, el tratamiento estadístico empleado para analizar la relación entre las parcelas y las propiedades del suelo estudiadas fue el análisis de factores principales (AFP). AFP se aplicó, en todos los parámetros estudiados, a los valores medios obtenidos de las tres repeticiones que se realizaron en cada determinación. Para el AFP se utilizó el método de rotación mediante normalización Varimax. Los parámetros considerados en este análisis estadístico fueron: pH, conductividad eléctrica y los porcentajes de elementos gruesos, materia orgánica, caliza activa, carbonato total equivalente, arena, limo, arcilla y fracción estable, así como, la capacidad de intercambio catiónico y el contenido de carbono orgánico y de yeso. Para el análisis de datos procedentes del estudio se usó el Programa estadístico SPSS Statistics versión 19.

3.4. Propiedades físicas de los suelos

Granulometría y textura

En la tabla 4 se muestra los porcentajes de arena, limo y arcilla y la clase textural de los suelos estudiados. La mayoría de los suelos presentaron un predominio de arena frente a las fracciones de limo y arcilla, observándose los siguientes porcentajes de clases texturales: Areno-franca (20,0%), Franco-arenosa (16,4%), Franca (3,4%), Franco-limosa (3,0%), Franco-arcillo-arenosa (25,0%), Arcillo-arenosa (1%), Franco-arcillosa (29,2%), Arcillo-limosa (1,0%) y Arcillosa (1,0%).

Tabla 4. Porcentajes de arena, limo y arcilla y clase textural de los suelos estudiados.

Clave Suelo	% arena	% limo	% arcilla	Textura
1	65	14	21	FRANCO-ARCILLO-ARENOSA
2	85	5	11	ARENO-FRANCA
3	81	7	12	ARENO-FRANCA
4	83	5	12	ARENO-FRANCA
5	69	10	21	FRANCO-ARCILLO-ARENOSA
6	45	33	22	FRANCA
7	45	33	22	FRANCA
8	82	8	9	ARENO-FRANCA
9	73	15	12	ARENO-FRANCA
10	76	12	12	ARENO-FRANCA
11	61	20	18	FRANCO-ARENOSA
12	76	9	14	ARENO-FRANCA
13	73	10	17	FRANCO-ARENOSA
14	·		÷	
15	66	14	20	FRANCO-ARENOSA
_	55	21	24	FRANCO-ARCILLO-ARENOSA
16	63	25	12	FRANCO-ARENOSA
17	52	40	8	FRANCO-ARENOSA
18	59	16	25	FRANCO-ARCILLO-ARENOSA
19	78	9	13	ARENO-FRANCA
20	54	29	17	FRANCO-ARENOSA
21	52	25	23	FRANCO-ARCILLO-ARENOSA
22	50	25	25	FRANCO-ARCILLO-ARENOSA
23	55	20	25	FRANCO-ARCILLO-ARENOSA
24	53	20	27	FRANCO-ARCILLO-ARENOSA
25	53	23	24	FRANCO-ARCILLO-ARENOSA
26	78	8	14	ARENO-FRANCA
27	· · · · · · · · · · · · · · · · · · · ·		÷	
28	68	16	16	FRANCO-ARENOSA
_	39	24	37	FRANCO-ARCILLOSA
29	56	21	24	FRANCO-ARCILLO-ARENOSA
30	45	26	29	FRANCO-ARCILLO-ARENOSA
31	44	21	35	FRANCO-ARCILLOSA
32	73	14	13	ARENO-FRANCA
33	74	15	11	ARENO-FRANCA
34	66	17	17	FRANCO-ARENOSA
35	84	7	9	ARENO-FRANCA
36	84	6	10	ARENO-FRANCA
37	36	25	39	FRANCO-ARCILLOSA
38	34	36	29	FRANCO-ARCILLOSA
39	66	9	26	FRANCO-ARCILLO-ARENOSA
40	59	16	24	FRANCO-ARCILLO-ARENOSA
41	•	23	42	
42	36		÷	ARCILLOSA
	79	9	12	ARENO-FRANCA
43	83	8	9	ARENO-FRANCA
44	59	19	22	FRANCO-ARCILLO-ARENOSA
45	34	62	3	FRANCO-LIMOSA
46	43	54	3	FRANCO-LIMOSA
47	74	12	14	ARENO-FRANCA
48	75	8	17	FRANCO-ARENOSA
49	23	39	38	FRANCO-ARCILLOSA
50	24	40	37	FRANCO-ARCILLOSA
51	45	28	26	FRANCO-ARCILLO-ARENOSA
52	63	2	35	ARCILLO-ARENOSA
53	69	2	29	FRANCO-ARCILLO-ARENOSA
54	•	2	25	
55	73		÷	FRANCO-ARCILLO-ARENOSA
56	80	9	12	ARENO-FRANCA
	81	7	12	ARENO-FRANCA
57	83	4	13	ARENO-FRANCA
58	77	9	14	ARENO-FRANCA
59	72	14	14	ARENO-FRANCA
60	75	11	14	ARENO-FRANCA
61	76		12	

Tabla 4. Porcentajes de arena, limo y arcilla y clase textural de los suelos estudiados (continuación).

Clave Suelo	% arena	% limo	% arcilla	Textura
62	58	37	4	FRANCO-ARENOSA
63	58	36	6	FRANCO-ARENOSA
64	55	22	22	FRANCO-ARCILLO-ARENOSA
65	57	38	5	FRANCO-ARENOSA
66	53	25	22	FRANCO-ARCILLO-ARENOSA
67	61	21	17	FRANCO-ARENOSA
68	64	16	20	FRANCO-ARENOSA
69	60	18	22	FRANCO-ARCILLO-ARENOSA
70	60	17	24	FRANCO-ARCILLO-ARENOSA
71	61	19	20	FRANCO-ARENOSA
72	69	14	17	FRANCO-ARENOSA
73	64	16	20	FRANCO-ARENOSA
74	54	24	22	FRANCO-ARCILLO-ARENOSA
	55	22	22	FRANCO-ARCILLO-ARENOSA
75		<u> </u>		
76	58	17	25	FRANCO-ARCILLO-ARENOSA
77	66	16	17	FRANCO-ARENOSA
78	63	17	20	FRANCO-ARENOSA
79	49	23	27	FRANCO-ARCILLO-ARENOSA
80	37	34	29	FRANCO-ARCILLOSA
81	32	34	34	FRANCO-ARCILLOSA
82	21	47	32	FRANCO-ARCILLOSA
83	39	29	33	FRANCO-ARCILLOSA
84	36	30	34	FRANCO-ARCILLOSA
85	51	25	24	FRANCO-ARCILLO-ARENOSA
86	44	27	29	FRANCO-ARCILLOSA
87	37	36	28	FRANCO-ARCILLOSA
88	59	18	23	FRANCO-ARCILLO-ARENOSA
89	41	30	29	FRANCO-ARCILLOSA
90	36	36	28	FRANCO-ARCILLOSA
91	31	34	35	FRANCO-ARCILLOSA
92	35	35	30	FRANCO-ARCILLOSA
93	42	30	28	FRANCO-ARCILLOSA
94	46	28	26	FRANCO-ARCILLO-ARENOSA
95	13	46	41	ARCILLO-LIMOSA
96	36	26	39	FRANCO-ARCILLOSA
97	36	35	30	FRANCO-ARCILLOSA
	36	31	34	FRANCO-ARCILLOSA
98		<u> </u>		FRANCO-ARCILLOSA FRANCO-ARCILLOSA
99	33	36	31	
100	34	35	31	FRANCO-ARCILLOSA
101	36	32	32	FRANCO-ARCILLOSA
102	41	27	32	FRANCO-ARCILLOSA
103	28	66	7	FRANCO-LIMOSA
104	34	34	32	FRANCO-ARCILLOSA
105	33	35	32	FRANCO-ARCILLOSA
106	43	34	22	FRANCA
107	41	34	25	FRANCA
108	42	27	31	FRANCO-ARCILLOSA
109	42	28	31	FRANCO-ARCILLOSA
110	34	28	38	FRANCO-ARCILLOSA
111	35	35	30	FRANCO-ARCILLOSA
112	41	30	29	FRANCO-ARCILLOSA
113	43	27	30	FRANCO-ARCILLOSA
114	39	31	30	FRANCO-ARCILLOSA
115	44	26	30	FRANCO-ARCILLOSA
116	49	23	28	FRANCO-ARCILLO-ARENOSA
110	30	30	40	I NAMES ANGILLO-ANLINOJA

Respecto al estudio conjunto de estos parámetros en las distintas zonas estudiadas, se puede observar que se encontraron grandes diferencias estadísticas entre los porcentajes medios de arena, limo y arcilla entre las diferentes zonas estudiadas (Tablas 5, 6 y 7). Las zonas de Ctra. El Puerto-Salinas y Almansa-Los Almendros fueron las que tuvieron contenidos altos de arena, mientras que las zonas de Monóvar, La Algueña-Romana y Novelda presentaron contenidos altos de arcilla. Esto conllevó a que en las primeras zonas la mayoría de los suelos presentaran texturas gruesas, y en las segundas zonas las texturas fueran en su mayoría finas.

Los suelos con texturas gruesas son suelos sueltos de poca cohesión, con una organización particulada, escasa capacidad de retención de agua y nutrientes, con una elevada porosidad y permeabilidad que facilita el drenaje y de este modo su desecación, son fácilmente penetrables por el sistema radicular y de baja dificultad de laboreo. La materia orgánica de estos suelos se mineraliza muy fácilmente y además son suelos calientes que adelantan la maduración de la uva. Sin embargo, los suelos de texturas finas son suelos plásticos, que se apelmazan fácilmente, con gran capacidad de retención del agua y de nutrientes para las plantas, son fácilmente encharcables, difíciles de penetrar por las raíces y también de trabajar. En general, son suelos fríos, que retrasan la maduración de la uva y dan notables producciones. Los terrenos más adecuados para el cultivo de la vid son los suelos areno-francos, así como los suelos arenosos, teniendo estos últimos una gran resistencia filoxérica (Hidalgo Fernández-Cano e Hidalgo Togores, 2011).

Tabla 5. Valores medios, desviación del estándar e intervalo de valores del porcentaje de arena según la zona estudiada.

Zona	Media	Desviación del estándar	Intervalo
Ctra. El Puerto-Salinas	67 de	13	45-85
Ctra. Yecla	61 cde	15	39-84
Benajama	46 abc	15	34-66
Sax-Castalla-Paraje de La Torre	54 bcd	23	23-83
Almansa-Los Almendros	75 e	6	63-83
Pinoso	55 bcd	12	21-69
Monóvar	39ab	11	13-59
La Algueña-Romana	37a	4	28-43
Novelda	41ab	7	30-49
F-Anova	14,124***		

^{***:} significativo a P<0,001.

Valores medios seguidos de la misma letra no son significativos (P < 0.05) entre zonas.

Tabla 6. Valores medios, desviación del estándar e intervalo de valores del porcentaje de limo según la zona estudiada.

Zona	Media	Desviación del estándar	Intervalo
Ctra. El Puerto-Salinas	17 ab	10	5-40
Ctra. Yecla	18 ab	7	6-26
Benajama	22 bcd	10	9-36
Sax-Castalla-Paraje de La Torre	28 bcd	20	8-62
Almansa-Los Almendros	7 a	4	2-14
Pinoso	24 bcd	9	14-47
Monóvar	31 cd	7	18-46
La Algueña-Romana	34 d	9	26-66
Novelda	27 bcd	3	23-31
F-Anova	8,841***		

^{***:} significativo a P<0,001.

Valores medios seguidos de la misma letra no son significativos (P < 0.05) entre zonas.

Tabla 7. Valores medios, desviación del estándar e intervalo de valores del porcentaje de arcilla según la zona estudiada.

Zona	Media	Desviación del estándar	Intervalo
Ctra. El Puerto-Salinas	16 a	5	8-25
Ctra. Yecla	21 ab	9	9-37
Benajama	32 c	8	24-42
Sax-Castalla-Paraje de La Torre	18 a	13	3-38
Almansa-Los Almendros	18 a	8	12-35
Pinoso	20 ab	8	4-34
Monóvar	30 bc	5	23-41
La Algueña-Romana	30 bc	7	7-39
Novelda	32 c	5	28-40
F-Anova	8,043***		

^{***:} significativo a P<0,001.

Valores medios seguidos de la misma letra no son significativos (P < 0.05) entre zonas.

Elementos gruesos

La mayoría de los suelos muestreados presentaron un porcentaje de elementos gruesos (\emptyset > 2mm) < 50%, lo cual supone que no hayan limitaciones de uso del suelo, respecto al empleo de maquinaría, laboreo, etc. (Figura 7).

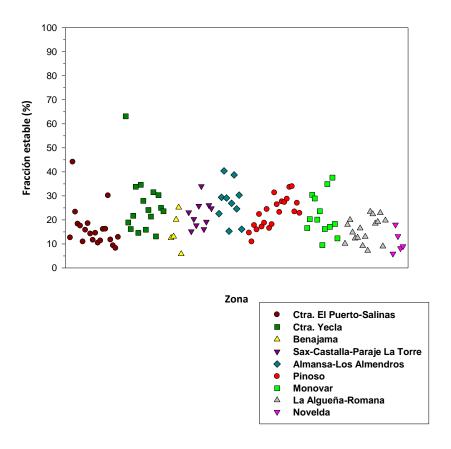
En relación a los valores medios de elementos gruesos en las distintas zonas estudiadas, se encontró que las zonas de la Ctra. El Puerto-Salinas, Ctra. Yecla, Benajama, La Algueña-Romana y Novelda tuvieron porcentajes intermedios de estas fracciones en comparación con aquellos de las zonas de Sax-Castalla-Paraje de La Torre, Almansa-Los Almendros, Pinoso y Monóvar (Tabla 8).

Figura 7. Porcentaje de elementos gruesos (Ø> 2mm) de las parcelas muestreadas dentro de las diferentes zonas de las comarcas del Vinalopó-Alto y del Vinalopó-Medio en la profundidad 0-30 cm.

Tabla 8. Valores medios, desviación del estándar e intervalo de valores del porcentaje de elementos gruesos en la profundidad de 0-30 cm, según la zona estudiada.

Zona	Media	Desviación del estándar	Intervalo
Ctra. El Puerto-Salinas	34 ab	15	5-55
Ctra. Yecla	33 ab	10	14-52
Benajama	34 ab	14	15-45
Sax-Castalla-Paraje de La Torre	23 a	16	5-57
Almansa-Los Almendros	48 b	10	22-58
Pinoso	21a	11	5-39
Monóvar	28a	9	11-41
La Algueña-Romana	36ab	16	11-54
Novelda	38 ab	15	14-53
F-Anova	4,970***		

^{***:} significativo a P<0,001.


Valores medios seguidos de la misma letra no son significativos (P < 0.05) entre zonas.

Estabilidad de agregados

La formación de agregados depende de las características climáticas, tales como temperatura y precipitación, y de varias propiedades del suelo: textura, minerales arcillosos, contenido de cationes, óxidos de aluminio y hierro y materia orgánica del suelo (Bronick y Lal, 2005; Abiven y col., 2009). La materia orgánica del suelo, los óxidos y carbonatos son los principales agentes involucrados en la estabilización de los agregados del suelo (Tisdall y Oades, 1982; Six y col., 2004).

El porcentaje de la fracción estable en los suelos estudiados osciló entre un 6 y 63 % (Figura 8), siendo el valor medio de este parámetro de 21 %. Este valor medio estuvo muy por debajo del valor medio de estabilidad de agregados encontrado por Caravaca y col. (2004) en diferentes suelos cultivables del sureste español (40%) en la fracción de tamaño de partícula 0,2-4 mm.

En la tabla 9 se puede observar que se encontraron grandes diferencias estadísticas entre los valores medios del porcentaje de fracción estable entre las diferentes zonas estudiadas.

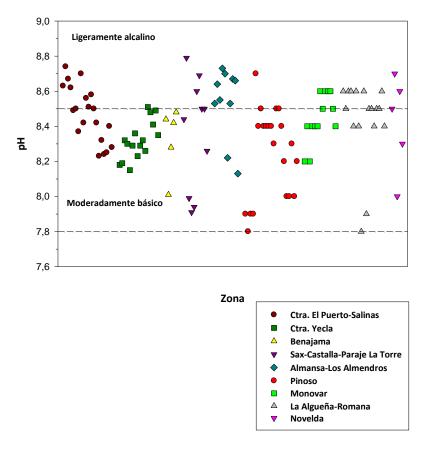
Figura 8. Porcentaje de fracción estable (partículas de 1-2 mm) de las parcelas muestreadas dentro de las diferentes zonas de las comarcas del Vinalopó-Alto y del Vinalopó-Medio en la profundidad 0-30 cm.

Tabla 9. Valores medios, desviación del estándar e intervalo de valores del porcentaje de fracción estable, según la zona estudiada.

Zona	Media	Desviación del estándar	Intervalo
Ctra. El Puerto-Salinas	16ab	8	8-44
Ctra. Yecla	26 bc	12	13-63
Benajama	15ab	5	6-25
Sax-Castalla-Paraje de La Torre	22bc	6	15-34
Almansa-Los Almendros	27c	8	15-40
Pinoso	23 bc	6	11-34
Monóvar	22 bc	9	10-38
La Algueña-Romana	16 ab	5	7-23
Novelda	11 a	5	6-18
F-Anova	4,826***		

^{***:} significativo a P<0,001.

Valores medios seguidos de la misma letra no son significativos (P < 0.05) entre zonas.


3.5. Propiedades físico-químicas de los suelos

рΗ

La mayoría de los suelos estudiados presentaron en superficie valores de pH < 8,5, clasificándose como moderadamente básicos (Porta y col., 2003). Sin embargo, algunos suelos de las zonas Ctra. El Puerto-Salinas, Sax-Castalla-Paraje de La Torre, Almansa-Los Almendros, Pinoso, Monóvar, La Algueña-Romana y Novelda tuvieron valores superficiales de pH > 8,5, pasando de este modo a clasificarse como ligeramente alcalinos (Figura 9).

Para el cultivo de la vid es recomendable que el pH del suelo no sea excesivamente alto, ya que conforme aumenta el pH del suelo disminuye la disponibilidad de Cu, Mn, Fe y Zn, produciéndose la llamada "clorosis férrica" (carencia de hierro) que aparece en vides cultivadas en suelos básicos (White, 2009).

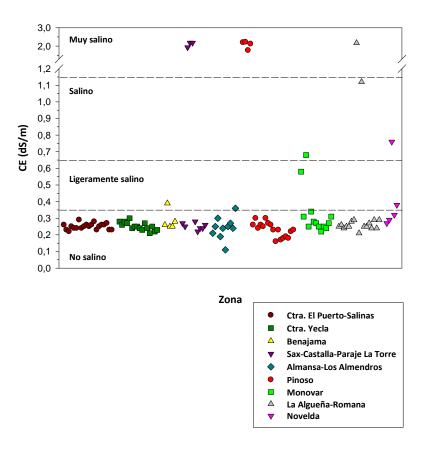
En la tabla 10 se muestran los valores medios de pH, en la profundidad de 0-30 cm, en las distintas zonas estudiadas. No se encontraron diferencias significativas en los valores superficiales de este parámetro según la zona muestreada.

Figura 9. Valores de pH de las parcelas muestreadas dentro de las diferentes zonas de las comarcas del Vinalopó-Alto y del Vinalopó-Medio en la profundidad 0-30 cm.

Tabla 10. Valores medios de pH, desviación del estándar e intervalo de valores en la profundidad de 0-30 cm, según la zona estudiada.

Zona	Media	Desviación del estándar	Intervalo
Ctra. El Puerto-Salinas	8,47a	0,15	8,23-8,74
Ctra. Yecla	8,32a	0,10	8,15-8,51
Benajama	8,32a	0,19	8,01-8,48
Sax-Castalla-Paraje de La Torre	8,36a	0,32	7,91-8,79
Almansa-Los Almendros	8,54a	0,20	8,13-8,73
Pinoso	8,24a	0,25	7,80-8,70
Monóvar	8,45a	0,13	8,20-8,60
La Algueña-Romana	8,44a	0,23	7,80-8,60
Novelda	8,42a	0,27	8,00-8,70
F-Anova	2.768 ^{NS}		

NS: No significativo.


Valores medios seguidos de la misma letra no son significativos (P < 0.05) entre zonas.

Conductividad eléctrica

La salinidad del suelo es el principal factor limitante del cultivo de la vid. No se consideran perjudiciales los carbonatos, bicarbonatos y sulfatos de calcio por su baja solubilidad, pero sí los cloruros y sulfatos sódicos y magnésicos. *Vitis vinífera* llega a tolerar en buenas condiciones un contenido en sales que produzca una conductividad eléctrica, en el extracto de pasta saturada, de hasta 4,7 dS/m, pero es aconsejable que el valor de este parámetro no supere los 2,5-3,0 dS/m. Con el empleo de porta-injertos el suelo no debe de tener un valor de conductividad eléctrica superior a 1,9-2,0 dS/m y ello con los más adaptados a dicha adversidad (Hidalgo Fernández-Cano e Hidalgo Togores, 2011).

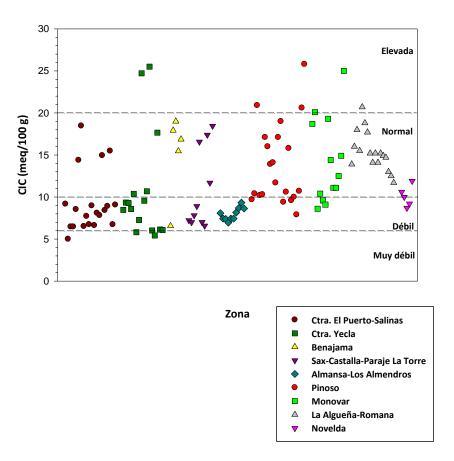
La mayoría de los suelos estudiados tuvieron unos valores superficiales de conductividad eléctrica bajos, clasificándose de este modo como no salinos (Cros, 1983) (Figura 10). Solo algunos suelos de la zona de Sax-Castalla-Paraje La Torre, Pinoso y La Algueña-Romana presentaron valores de este parámetro >1,15 dS/m, clasificándose como suelos muy salinos. Este hecho puede deberse a que estos suelos se encontraban dentro delos diapiros salinos triásicos que se encuentra en Pinoso y entre Villena y Sax. Estos diapiros son estructuras geológicas intrusivas, formadas por masas de evaporitas (sales, anhidrita y yesos) que proceden de niveles estratigráficos muy plásticos (sobre todo del Keuper). Estas estructuras cuando son sometidas a gran presión, ascienden por las capas sedimentarias de la corteza terrestre, atravesándolas y deformándolas (de la Torre García y Alías Pérez, 1996).

En relación a los valores medios de este parámetro en las zonas estudiadas, se observó que las zonas correspondientes a la comarca del Vinalopó Medio presentaron valores intermedios en relación con las zonas de la comarca del Vinalopó Alto (Tabla 11). Las zonas con parcelas con altos valores de conductividad eléctrica (Sax-Castalla-Paraje de La Torre, Pinoso y La Algueña-Romana) tuvieron unos valores de desviación del estándar también altos, debido a que los suelos cercanos a los diapiros salinos tuvieron un contenido salino elevado en comparación con el resto de suelos muestreados dentro de estas zonas.

Figura 10. Valores de conductividad eléctrica (CE) de las parcelas muestreadas dentro de las diferentes zonas de las comarcas del Vinalopó-Alto y del Vinalopó-Medio en la profundidad 0-30 cm.

Tabla 11. Valores medios de conductividad eléctrica (dS/m), desviación del estándar e intervalo de valores en la profundidad de 0-30 cm, según la zona estudiada.

Zona	Media	Desviación del estándar	Intervalo
Ctra. El Puerto-Salinas	0,25a	0,01	0,22-0,29
Ctra. Yecla	0,25a	0,02	0,21-0,30
Benajama	0,29a	0,05	0,25-0,39
Sax-Castalla-Paraje de La Torre	0,81c	0,89	0,22-2,18
Almansa-Los Almendros	0,24a	0,06	0,11-0,36
Pinoso	0,58bc	0,74	0,16-2,22
Monóvar	0,33ab	0,13	0,22-0,68
La Algueña-Romana	0,42b	0,49	0,21-2,17
Novelda	0,40b	0,20	0,27-0,76
F-Anova	2,093*		


^{*:} significativo a P<0,05.

Valores medios seguidos de la misma letra no son significativos (P < 0.05) entre zonas.

Capacidad de intercambio catiónico

Aproximadamente la mitad de los suelos estudiados presentaron una capacidad de intercambio catiónico (CIC) débil (CIC entre 5-10 meq/100g) (Saña et al., 1996) (Figura 11). Estos bajos valores de CIC posiblemente se debieron a que el contenido de arcillas y de materia orgánica de los suelos también fue bajo. La relación positiva entre la CIC y el contenido de arcillas y materia orgánica del suelo fue observada por Heeper et al. (2006) en un estudio sobre los efectos de las cenizas volcánicas en el tipo de mineral que constituye la fracción de las arcillas y sobre diferentes propiedades físico-químicas del suelo.

En la tabla 12 se puede observar que se encontraron grandes diferencias estadísticas entre los valores medios de CIC de las diferentes zonas estudiadas.

Figura 11. Valores de capacidad de intercambio catiónico (CIC) de las parcelas muestreadas dentro de las diferentes zonas de las comarcas del Vinalopó-Alto y del Vinalopó-Medio en la profundidad 0-30 cm.

Tabla 12. Valores medios de capacidad de intercambio catiónico (CIC), desviación del estándar e intervalo de valores en la profundidad de 0-30 cm, según la zona estudiada.

Zona	Media	Desviación del estándar	Intervalo
Ctra. El Puerto-Salinas	9,2ab	3,6	5,0-18,5
Ctra. Yecla	10,7 abc	6,4	5,4-25,5
Benajama	15,2 bc	5,0	6,6-19,0
Sax-Castalla-Paraje de La Torre	10,9 abc	4,8	6,6-18,5
Almansa-Los Almendros	8,0 a	0,7	7,0-9,3
Pinoso	13,8bc	4,8	7,9-25,8
Monóvar	14,2bc	5,1	8,6-25,0
La Algueña-Romana	15,4 c	2,3	11,7-20,7
Novelda	10,1 abc	1,3	8,7-11,9
F-Anova	5,001***		

^{***:} significativo a P<0,001.

Valores medios seguidos de la misma letra no son significativos (P < 0.05) entre zonas.

3.6. Propiedades químicas de los suelos

Carbonato cálcico total equivalente y caliza activa

Un exceso de carbonato cálcico total equivalente y específicamente de caliza activa (fracción de carbonatos susceptible de solubilizarse en la disolución acuosa de CO₂ que existe en el suelo) produce un gran debilitamiento de los viñedos no resistentes, como consecuencia de una acusada clorosis (Hidalgo Fernández-Cano e Hidalgo Togores, 2011).

La mayoría de los suelos estudiados mostraron un contenido alto o muy alto tanto de carbonato cálcico total equivalente como de caliza activa, $CaCO_3$ total equivalente entre 20-40% ó > 40% y caliza activa > 9% (Yanez, 1989), (Figuras 12 y 13).

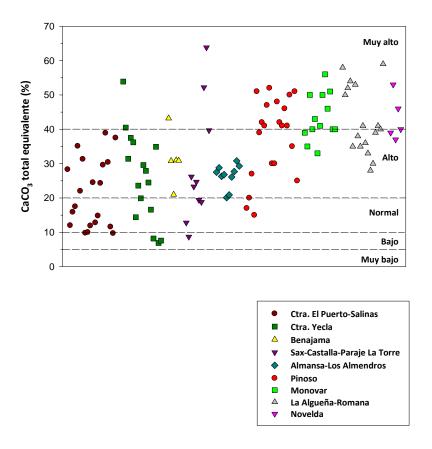
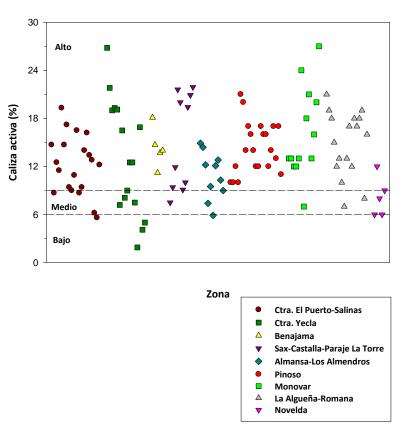



Figura 12. Porcentaje de $CaCO_3$ total equivalente de las parcelas muestreadas dentro de las diferentes zonas de las comarcas del Vinalopó-Alto y del Vinalopó-Medio en la profundidad 0-30 cm.

Figura 13. Porcentaje de caliza activa de las parcelas muestreadas dentro de las diferentes zonas de las comarcas del Vinalopó-Alto y del Vinalopó-Medio en la profundidad 0-30 cm.

En las tablas 13 y 14se muestran los porcentajes medios de CaCO₃ total equivalente y de caliza activa de las zonas estudiadas. Las zonas de Ctra. de Yecla, Benajama, Almansa-Los Almendros y Pinoso presentaron valores intermedios de estos parámetros respecto a las otras zonas del estudio.

Tabla 13. Porcentajes medios de CaCO₃ total equivalente, desviación del estándar e intervalo de valores en la profundidad de 0-30 cm, según la zona estudiada.

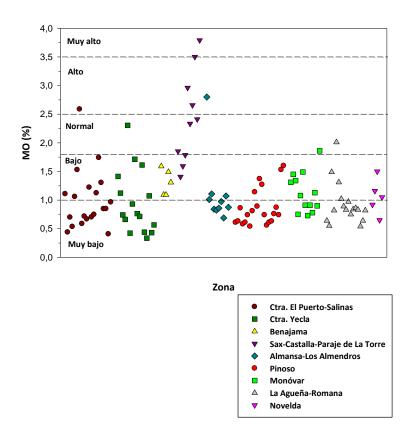
Zona	Media	Desviación del estándar	Intervalo
Ctra. El Puerto-Salinas	21 a	10	10-39
Ctra. Yecla	26 ab	13	7-54
Benajama	31 abc	8	21-43
Sax-Castalla-Paraje de La Torre	29 abc	18	9-64
Almansa-Los Almendros	26 ab	3	20-31
Pinoso	38 bc	12	15-52
Monóvar	43 c	7	33-56
La Algueña-Romana	43 c	10	28-59
Novelda	43 c	7	37-53
F-Anova	8,517***		

^{***:} significativo a P<0,001.

Valores medios seguidos de la misma letra no son significativos (P < 0.05) entre zonas.

Tabla 14. Porcentajes medios de caliza activa, desviación del estándar e intervalo de valores en la profundidad de 0-30 cm, según la zona estudiada.

Zona	Media	Desviación del estándar	Intervalo
Ctra. El Puerto-Salinas	12 ab	4	6-19
Ctra. Yecla	13 ab	7	2-27
Benajama	14 ab	3	11-18
Sax-Castalla-Paraje de La Torre	15 b	6	8-22
Almansa-Los Almendros	11 ab	3	6-15
Pinoso	14 ab	3	10-21
Monóvar	16 b	6	7-27
La Algueña-Romana	15 b	4	7-21
Novelda	8 a	3	6-12
F-Anova	2,399*		


^{*:} significativo a P<0,05.

Valores medios seguidos de la misma letra no son significativos (P < 0.05) entre zonas.

Materia orgánica

La materia orgánica mejora la fertilidad del suelo, pero en el caso del cultivo de la vid, los suelos ricos en materia orgánica son menos aptos para este cultivo, ya que ésto aunque favorece la obtención de grandes producciones, las calidades del fruto y del mosto obtenidas son bajas (Hidalgo Fernández-Cano e Hidalgo Togores, 2011).

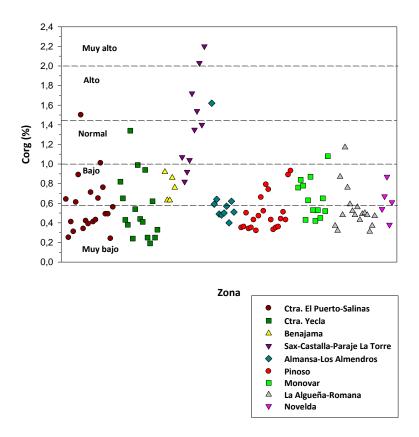
En la mayor parte de los suelos muestreados el contenido de materia orgánica fue muy bajo (materia orgánica < 1,00 %) o bajo (materia orgánica entre 1,00-1,75 %), teniendo en cuenta el tipo de suelo mayoritario de la zona (arcilla = 10-30 %) (Yanez, 1989) (Figura 14). Este hecho puede ser debido a que en los suelos neutros o ligeramente básicos se favorece la degradación de la materia orgánica, en especial cuando abundan los carbonatos y más concretamente la caliza activa (Saña y col., 1996; Hidalgo Fernández-Cano e Hidalgo Togores, 2011). También, son suelos sin cubierta vegetal, con una reposición de materia orgánica baja y con laboreo. Bustamante et al. (2011), en un experimento a largo tiempo de aplicación de estiércol y compost a suelos vitivinícolas calizos, estimaron que la materia orgánica del viñedo debería de reponerse cada tres años como mínimo.

Figura 14. Porcentaje de materia orgánica (MO) de las parcelas muestreadas dentro de las diferentes zonas de las comarcas del Vinalopó-Alto y del Vinalopó-Medio en la profundidad 0-30 cm.

En relación con los porcentajes medios de materia orgánica de los suelos de las zonas estudiadas, no se encontraron diferencias significativas en los valores de este parámetro en los suelos de las zonas Ctra. El Puerto-Salinas, Ctra. Yecla, Benajama, Almansa-Los Almendros, Pinoso, Monóvar, La Algueña-Romana y Novelda (Tabla 15). Sin embargo, los suelos de la zona de Sax-Castalla-Paraje de La Torre mostraron los

valores más altos de materia orgánica. Este hecho podría estar relacionado con los diferentes programas de fertilización orgánica llevados a cabo según la bodega o el viticultor.

Tabla 15. Porcentajes medios de materia orgánica, desviación del estándar e intervalo de valores en la profundidad de 0-30 cm, según la zona estudiada.


Zona	Media	Desviación del estándar	Intervalo
Ctra. El Puerto-Salinas	0,99a	0,51	0,41-2,59
Ctra. Yecla	0,95a	0,55	0,33-2,31
Benajama	1,31a	0,22	1,09-1,59
Sax-Castalla-Paraje de La Torre	2,43b	0,80	1,41-3,79
Almansa-Los Almendros	1,10a	0,60	0,69-2,80
Pinoso	0,86a	0,32	0,54-1,60
Monóvar	1,13a	0,34	0,73-1,86
La Algueña-Romana	0,93a	0,36	0,54-2,01
Novelda	1,06a	0,31	0,65-1,50
F-Anova	10,781***		

^{***:} significativo a P<0,001.

Valores medios seguidos de la misma letra no son significativos (P < 0.05) entre zonas.

Carbono orgánico

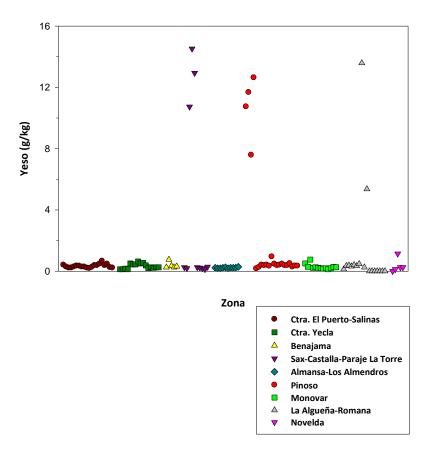
Los resultados obtenidos en los suelos muestreados en la zona de estudio indican que los contenidos de carbono orgánico fueron muy bajos o bajos (Yanez, 1989) (Figura 15). El valor medio de carbono orgánico del suelo fue de 27 t Corg/ha, teniendo en cuenta este valor y la superficie total de suelo vitivinícola que está bajo el amparo de la Denominación de Origen Protegida Alicante (9.100 ha), la cantidad de carbono orgánico secuestrado en estos suelos es de 0,25 Tg C. En la mayoría de suelos el contenido en carbono orgánico expresado como t Corg/ha fue también bajo en comparación con la media de carbono de los suelos europeos, para una profundidad de 0-30 cm, (53 t Corg/ha; Smith y col., 2001). Estas zonas con bajo contenido en carbono orgánico, presentan un elevado potencial para el almacenamiento de carbono dentro del carbono orgánico, a través de prácticas de manejo agrícola adecuadas. De acuerdo con Freibauer y col. (2004), prácticas agrícolas tales como la labranza o no del terreno presentan una tasa potencial de secuestro de C de unos 0,4 o < 0,4 t Corg/ha año, respectivamente. Del mismo modo, el empleo de diferentes tipos de fertilizante orgánico también proporciona distintas tasas potenciales de secuestro de C de unos 0,4-1,5 t Corg/ha año con estiércol de animal; 0,2-0,7 t Corg/ha año con residuos agrícolas; 0,3 t Corg/ha año con lodo de depuración de aguas residuales y 0,4 t Corg/ha año con compost.

Figura 15. Porcentaje de carbono orgánico (Corg) de las parcelas muestreadas dentro de las diferentes zonas de las comarcas del Vinalopó-Alto y del Vinalopó-Medio en la profundidad 0-30 cm.

En relación con los porcentajes medios de carbono orgánico de los suelos de las zonas estudiadas, no se encontraron diferencias significativas en los valores de este parámetro en los suelos de las zonas Ctra. El Puerto-Salinas, Ctra. Yecla, Benajama, Almansa-Los Almendros, Pinoso, Monóvar, La Algueña-Romana y Novelda, siendo los suelos de la zona de Sax-Castalla-Paraje de La Torre los que mostraron los valores más altos de este parámetro (Tabla 16), tal y como también se observó en el porcentaje de materia orgánica.

Tabla 16. Porcentajes medios de carbono orgánico, desviación del estándar e intervalo de valores en la profundidad de 0-30 cm, según la zona estudiada.

Zona	Media	Desviación del estándar	Intervalo
Ctra. El Puerto-Salinas	0,58a	0,30	0,24-1,50
Ctra. Yecla	0,55a	0,32	0,19-1,34
Benajama	0,76a	0,13	0,63-0,92
Sax-Castalla-Paraje de La Torre	1,41b	0,47	0,82-2,20
Almansa-Los Almendros	0,64a	0,35	0,40-1,62
Pinoso	0,50a	0,19	0,32-0,93
Monóvar	0,65a	0,20	0,42-1,08
La Algueña-Romana	0,54a	0,22	0,31-1,17
Novelda	0,61a	0,18	0,38-0,87
F-Anova	10,791***		


^{***:} significativo a P<0,001.

Valores medios seguidos de la misma letra no son significativos (P < 0.05) entre zonas.

Yeso

La mayoría de los suelos muestreados presentaron un contenido de yeso < 1 g/kg (Figura 16). Solo algunos suelos de la zona de Sax-Castalla-Paraje La Torre, Pinoso y La Algueña-Romana presentaron valores de este parámetro altos (yeso = 5-15 g/kg). Este hecho puede deberse a que estos suelos se encontraban dentro delos diapiros salinos triásicos que se encuentra en Pinoso y entre Villena y Sax, constituidos principalmente por yesos (Estévez y col, 2004).

Respecto a los valores medios de este parámetro en las zonas estudiadas, no se encontraron diferencias significativas en los contenidos de yeso en los suelos de las zonas Ctra. El Puerto-Salinas, Ctra. Yecla, Benajama, Almansa-Los Almendros, Monóvar y Novelda (Tabla 17). Sin embargo, Sax-Castalla-Paraje de La Torre, Pinoso y La Algueña-Romana tuvieron los valores más altos de este parámetro, siendo la zona de Sax-Castalla-Paraje de La Torre la que estadísticamente tuvo concentración de yeso más alta. Las zonas con parcelas con altos contenidos de yeso tuvieron unos valores de desviación del estándar también altos, debido a que los suelos cercanos a los diapiros salinos tuvieron un contenido de yeso elevado en comparación con el resto de suelos muestreados dentro de estas zonas.

Figura 16. Concentración de yeso de las parcelas muestreadas dentro de las diferentes zonas de las comarcas del Vinalopó-Alto y del Vinalopó-Medio en la profundidad 0-30 cm.

Tabla 17. Contenidos medios de yeso, desviación del estándar e intervalo de valores en la profundidad de 0-30 cm, según la zona estudiada.

Zona	Media	Desviación del estándar	Intervalo
Ctra. El Puerto-Salinas	0,329 a	0,115	0,189-0,663
Ctra. Yecla	0,322 a	0,168	0,126-0,632
Benajama	0,385 a	0,212	0,253-0,758
Sax-Castalla-Paraje de La Torre	3,971 d	6,111	0,126-14,521
Almansa-Los Almendros	0,223 a	0,030	0,189-0,284
Pinoso	2,359 c	4,215	0,167-12,637
Monóvar	0,281 a	0,170	0,126-0,758
La Algueña-Romana	1,271 b	3,418	0,002-13,590
Novelda	0,354 a	0,451	0,001-1,139
F-Anova	10,791*		

^{*:} significativo a P<0,05.

Valores medios seguidos de la misma letra no son significativos(P < 0,05) entre zonas.

3.7. Análisis multivariante

El análisis de factores principales (AFP) se aplicó a todos los parámetros analizados (n=13), indicados en el apartado de material y métodos. En el modelo propuesto, el valor obtenido de KMO (Medida de adecuación muéstrela de Kaiser-Meyer-Olkin) fue superior a 0,5 (KMO = 0,609) y el P-valor fue de 0,000 para la prueba de esfericidad de Barlett. Adicionalmente, ninguna de las variables consideradas presentó un valor de extracción < 0,5. Todo esto indicó que el modelo considerado fue el adecuado.

Mediante el establecimiento de 4 factores principales, el modelo fue capaz de explicar el 77,1 % de la variabilidad, según la siguiente contribución de cada factor principal: Factor 1: 29,9 %; Factor 2: 23,7 %; Factor 3: 14,1 % y Factor 4: 9,4 %. En la tabla 18 se muestra la matriz de componentes rotados.

Tabla 18. Matriz de componentes rotados

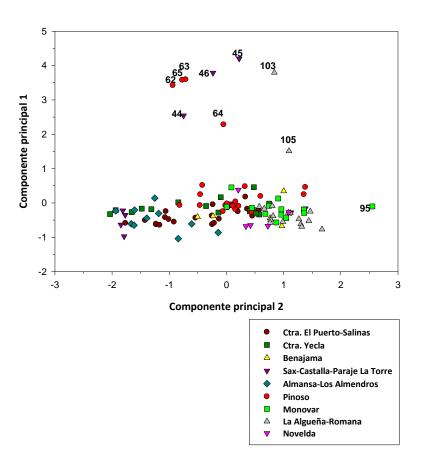
		Fac	tores	
	1	2	3	4
Varianza explicada (%)	29,9	23,7	14,1	9,4
Varianza acumulada (%)	29,9	53,6	67,7	77,1
Arena	-0,950	-0,101	-0,111	0,102
Arcilla	0,762	-0,449	0,101	-0,063
CaCO ₃total	0,755	-0,102	-0,070	0,446
Limo	0,744	0,522	0,090	-0,085
CIC	0,640	0,064	0,315	-0,229
Yeso	-0,057	0,956	0,042	-0,105
CE	-0,034	0,950	0,035	-0,125
рН	-0,120	-0,782	-0,074	0,017
МО	0,145	0,055	0,973	0,123
Corg	0,145	0,056	0,973	0,123
Fracción estable	-0,218	-0,033	0,053	0,807
Caliza activa	0,564	0,062	0,186	0,581
Elementos gruesos	0,017	-0,279	0,123	0,407

CIC: capacidad de intercambio catiónico; CE: conductividad eléctrica;

MO: materia orgánica; Corg: carbono orgánico;

Se representan en sombreado las diferentes variables agrupadas en cada componente, en función su mayor valor absoluto. Este valor es directamente

proporcional a la capacidad del componente principal para explicar la variabilidad observada en esa variable concreta, agrupándose en cada componente principal, aquellas variables que poseen comportamientos similares entre sí, permitiendo por tanto este modelo reducir las variables.


En el factor principal 1 se agruparon las variables Arena, Arcilla, Limo, CaCO₃totaly Capacidad de intercambio catiónico (CIC). El contenido de arena estuvo correlacionado de forma negativa con todos los parámetros asociados al factor principal 1 (Tabla 18). Esta correlación inversa de las arenas con el limo y la arcilla, muestra la relación que existe entre estas fracciones del suelo, de manera que el aumento de las fracciones más finas conlleva a la disminución de las fracciones más gruesas. Por otra parte, también se observó que la CIC estuvo correlacionada con el porcentaje de arcillas de estos suelos, debido posiblemente al bajo contenido de materia orgánica de los mismos.

En el factor principal 2 se agruparon las variables contenido de yeso, pH y conductividad eléctrica. El pH estuvo correlacionado de forma negativa con todos los parámetros asociados al factor principal 2 (Tabla 18).

En el factor principal 3 se agruparon las variables porcentaje de materia orgánica y contenido de carbono orgánico (Tabla 18).

En el factor principal 4 se agruparon las variables porcentaje de fracción estable, caliza activa y elementos gruesos (Tabla 18). La fracción estable estuvo correlacionada con el porcentaje de caliza activa de estos suelos, debido posiblemente al bajo contenido de materia orgánica de los mismos.

En la figura 17 se muestran los resultados del AFP basado en los datos obtenidos de los parámetros estudiados en los suelos muestreados. En general, todas las parcelas estudiadas se agruparon, indicando una aptitud similar para el cultivo de la vid. Solo las parcelas 44, 45, 46, 62, 63, 64, 65, 95, 103 y 105, se separaron del resto del grupo. Las parcelas 44, 45, 46, 62, 63, 64, 65, 103 y 105 tuvieron en común los altos contenidos de yeso y de valores de conductividad eléctrica. Sin embargo, la parcela 95 se diferenció del resto por el bajo contenido de arena y los altos contenidos de materia orgánica y carbono orgánico total, así como por el alto valor de la capacidad de intercambio catiónico.

Figura 17.Resultados del Análisis de Factores Principales basado en los datos obtenidos de los parámetros estudiados en los suelos muestreados dentro de las diferentes zonas de las comarcas del Vinalopó-Alto y del Vinalopó-Medio en la profundidad 0-30 cm.

4. **CONCLUSIONES**

Respecto al trabajo realizado se pueden extraer las siguientes conclusiones:

- La mayoría de los suelos estudiados en la zona del Vinalopó Alto y Medio tuvieron una granulometría y textura adecuada para el cultivo de la vid, ya que la mayor parte de los suelos tuvieron texturas gruesas y medias. Este tipo de suelos reduce la proliferación de hongos fitopatógenos debido a que son suelos con una adecuada porosidad y permeabilidad que facilita el drenaje.
- ✓ El porcentaje fracción estable de las partículas del suelo de entre 1-2 mm estuvo alrededor del 20%, pudiéndose establecer que los carbonatos del suelo estuvieron relacionados en mayor medida con la estabilidad de agregados que la materia orgánica del suelo.
- ✓ El contenido de sales de los suelos estudiados fue bajo y no se alcanzó en ninguna zona valores de conductividad eléctrica limitante para el cultivo de la vid.
- Sin embargo, los valores de pH y los porcentajes de caliza activa y carbonato cálcico total equivalente de estos suelos fueron altos, como es normal en los suelos calcáreos que predominan en el sureste español. Estos factores conllevan a la necesidad de la fertilización del suelo con sales de hierro para reducir la llamada "clorosis férrica" (carencia de hierro) que aparece en vides cultivadas en este tipo de suelos.
- La mayoría de los suelos estudiados presentaron un contenido de materia orgánica, carbono orgánico y valores de capacidad de intercambio catiónico no adecuados para el cultivo de la vid. Estos parámetros fueron muy bajos, indicando la necesidad de reposición de materia orgánica para contrarrestar los factores que la reducen en el suelo tales como, la ausencia de cubierta vegetal, la notable mineralización de la fracción orgánica debido a que son suelos con pH básico y con laboreo y a la toma de nutrientes por parte del cultivo.

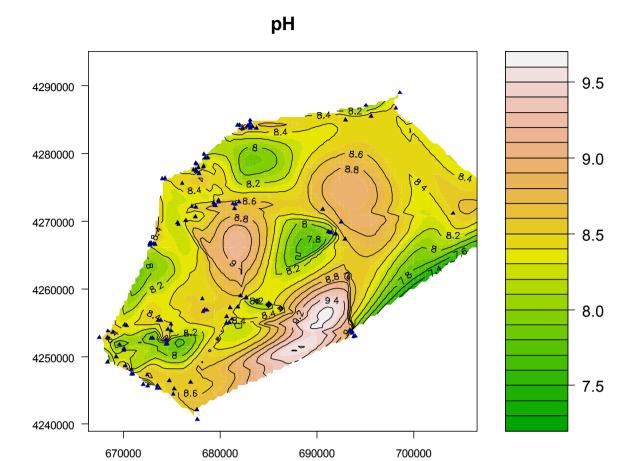
- ✓ El contenido de yeso de los suelos fue elevado en las parcelas cercanas a los diapiros salinos triásicos que se encuentra en Pinoso y entre Villena y Sax.
- ✓ El análisis multivariante mostró que en general, todas las parcelas tuvieron una aptitud similar para el cultivo de la vid, separándose del grupo las parcelas con altos contenidos de yeso y materia orgánica, altos valores de conductividad eléctrica y bajos porcentajes de arenas.

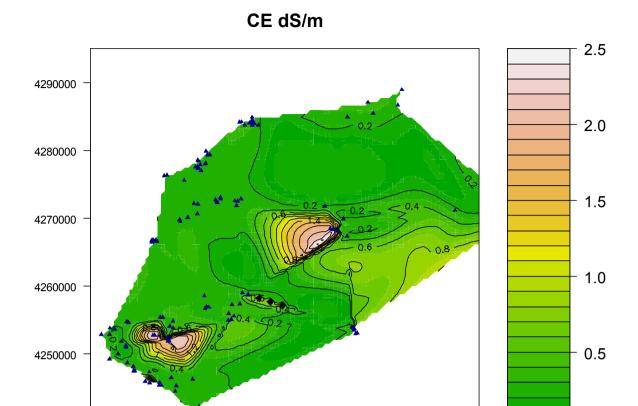
Como conclusión general se puede indicar que, en general los suelos estudiados de la comarca del Vinalopó amparados bajo la Denominación de Origen Protegida Alicante presentaron una aptitud adecuada para el cultivo de la vid, siendo necesario la aplicación de materia orgánica y la fertilización del suelo con sales de hierro para tener las condiciones apropiadas para este cultivo.

BIBLIOGRAFÍA

- Abrisqueta, C., Artes, F., Romero, M. (1962). Estudio crítico del método de Bower y Huss para la determinación de yeso en suelos calizos de Murcia. Anal. Edafol. Agrobiol. 21, 531–538.
- Bustamante, M.A., Said-Pullicino, D., Agulló, E., Andreu, J., Paredes, C. y Moral, R. (2011). Application of winery and distillery waste composts to a Jumilla (SE Spain) vineyard: Effects on the characteristics of a calcareous sandy-loam soil. Agriculture, Ecosystems and Environment 140, 80-87.
- Cros, S.A. (1983). Manual de suelos vegetales y aguas de riego. Servicio Agronómico.
- De la Torre, A., Alías Pérez, L.J. (1993). Suelos y vegetación en el Alto Vinalopó. Universidad de Alicante, Alicante.
- Estévez, A., Vera, J.A., Alfaro, P., Andreu, J.M., Tent-Manclús. J.E., Yébenes, A. (2004). Alicante en la Cordillera Bética. En: Geología de la provincia de Alicante. (Eds.) Alfaro, P., Andreu, J.M., Estévez, A., Tent-Manclús, Yébenes, A. Libro guía de las excursionesdel XIII Simposio sobre Enseñanza de la Geología. Instituto de Ciencias de la Educación, Universidad de Alicante. pp. 39-50.
- Freibauer, A., Rounsevell, M.D.A., Smith, P., Verhagen, J. (2004). Carbon sequestration in the agricultural soils of Europe. Geoderma 122, 1-23.
- Hepper, E.N., Buschiazzo, D.E., Hevia, G.G., Urioste, A., Antón, L., Hepper, E.N., Buschiazzo, D.E., Hevia, G.G., Urioste, A., Antón, L. (2006). Clay mineralogy, cation exchange capacity and specific surface area of loess soils with different volcanic ash contents. Geoderma 135: 216-223.
- Hidalgo Fernández-Cano, L., Hidalgo Togores, J. (2011). Tratado de viticultura. Ediciones Mundi-Prensa, Madrid.
- http://www.senderosdealicante.com/geologicos/lugares/pinoso.html
- IGME (2011). Instituto Geológico y Minero de España. Disponible en: http://www.igme.es/internet/default.asp
- MAPA (1994). Ministerio de Agricultura, Pesca y Alimentación. Métodos oficiales de análisis. Tomo III. Ed. Secretaría General Técnica, Madrid.
- MARM (2011). Ministerio de Medio Ambiente y Medio Rural y Marino. Información agroclimática. Disponible en: http://www.mapa.es/siar/Informacion.asp

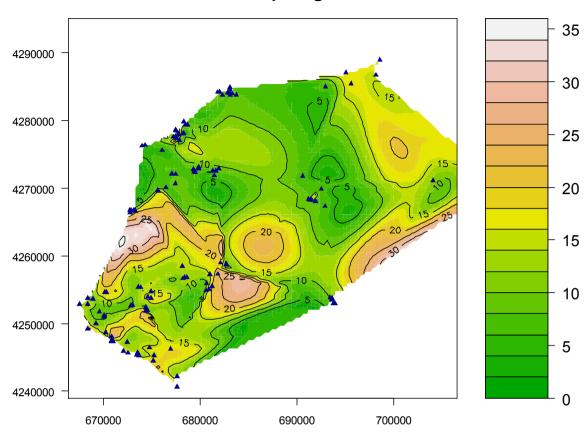
- Moreno-Caselles, J., Pérez-Murcia, M.D., Moral Herrero, R., Pérez Espinosa, A. Paredes Gil, C.(2003). Manual de técnicas de laboratorio para análisis de aguas, suelos, residuos orgánicos y plantas. Editorial Universidad Miguel Hernández, Elche
- Lebeau, R. (1969). Les grands types de structures agraires dans le monde, Paris, Masson.
- Porta J., López-Acevedo, M, Roquero, C. (2003). Edafología para la agricultura y el medio ambiente. Ediciones Mundi-Prensa, Madrid.
- Saña, J., More, J. C., Cohí, A. (1996).La gestión de la fertilidad del suelo. Ministerio de Agricultura, Pesca y Alimentación. Secretaría General Técnica, Madrid.
- Smith, P., Smith, J.U., Powlson, D.S.(2001). Soil Organic MatterNetwork (SOMNET): 2001 Model and Experimental Metadata. GCTE Report 7, Second Edition, GCTE Focus 3, Wallingford, Oxon, 223 pp.
- Vaudour, E. (2003). Les terroirs viticoles : Définitions, caractérisation et protection. Editorial Acribia, Zaragoza.
- Vera, J.A. (2004). Geología de la Cordillera Bética. En: Geología de la provincia de Alicante. (Eds.) Alfaro, P., Andreu, J.M., Estévez, A., Tent-Manclús, Yebenes, A. Libro guía de las excursiones del XIII Simposio sobre Enseñanza de la Geología. Instituto de Ciencias de la Educación, Universidad de Alicante. pp. 15-36.
- Vera, J.A. (1994). Geología de Andalucía. Enseñanza de las Ciencias de la Tierra, 2.2 y 2.3, 306-316.
- Walkley, A., Black, I.A. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci., 37, 29-38.
- White, R.E. (2009). Understanding vineyard soils. Oxford University Press, New York.
- Yanez, J. (1989). Análisis de suelos y su interpretación. Horticultura, 49: 75-89.
- Yeomans, J., Bremner, J.M. (1989). A rapid and precise method for routine determination of organic carbon in soil. Comunications in Soil Science and Plant Analysis, 19: 1467-1476.

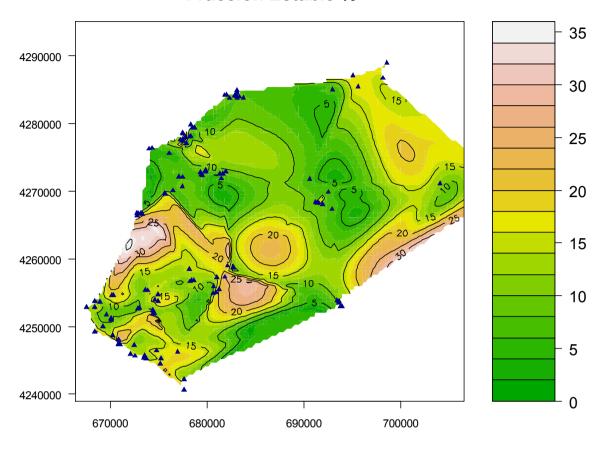

ANEXO I: DATOS ANALÍTICOS


CLAVE	pН	CE(dS/m)	MO (%)	Coox (%)	Corg (%)	Corg (g/kg)	E. gruesos (%)	%CaCO3	%CaCO3activo	% arena	% lim o	% ar cilla	CIC (meq/100g)	Fracción estable (%)	Yeso (g/kg)
1	8,63	0,26	1,11	0,50	0,64	6,43	17,9	28,3	14,7	65	14	21	9,2	12,6	0,411
2	8,74	0,23	0,44	0,20	0,25	2,55	24,7	12,0	8,7	85	5	11	5,0	44,1	0,284
3	8,67	0,22	0,70	0,31	0,41	4,06	25,2	15,9	12,5	81	7	12	6,5	23,3	0,224
4	8,62	0,25	0,54	0,24	0,31	3,11	20,9	17,5	11,5	83	5	12	6,5	18,3	0,224
5	8,49	0,24	1,06	0,48	0,61	6,15	52,8	35,1	19,3	69	10	21	8,5	17,5	0,284
6	8,50	0,24	1,53	0,69	0,89	8,87	44,8	22,0	14,7	45	33	22	14,4	10,9	0,348
7	8,37	0,29	2,59	1,16	1,50	15,01	47,6	31,3	17,2	45	33	22	18,5	15,8	0,347
8	8,70	0,24	0,59	0,26	0,34	3,40	13,3	9,8	9,4	82	8	9	6,5	18,5	0,284
9	8,42	0,25	0,72	0,32	0,42	4,15	25,1	10,0	9,0	73	15	12	7,7	14,2	0,284
10	8,56	0,26	0,67	0,30	0,39	3,87	22,1	11,9	10,9	76	12	12	6,7	11,6	0,224
11	8,51	0,25	1,22	0,55	0,71	7.08	42.0	24.5	16.5	61	20	18	9.0	14,5	0.189
12	8,58	0,26	0,70	0,32	0,41	4,07	31,6	12,8	8,7	76	9	14	6,6	10,4	0,253
13	8,50	0,28	0,75	0,34	0,43	4,33	37,9	14,8	9,4	73	10	17	8,1	11,3	0,379
14	8,42	0,23	1,12	0,50	0,65	6,51	44,3	24,3	14,0	66	14	20	7,8	16,1	0,379
15	8.23	0.25	1.74	0,78	1,01	10,09	52.8	29.6	16.2	55	21	24	14.9	16,2	0.474
16	8,32	0,26	1,30	0,59	0,76	7,56	54,9	38,9	13,4	63	25	12	8,4	30,1	0,663
17	8,24	0,26	0,85	0,38	0,49	4,91	48,2	30,4	12,8	52	40	8	8,9	11,7	0,379
18	8,25	0,27	0,85	0,38	0,49	4,92	16,5	11,6	6,2	59	16	25	15,5	9,3	0,474
19	8,40	0,23	0,41	0,18	0,24	2,36	5,0	9,7	5,6	78	9	13	6,7	8,2	0,253
20	8,28	0,23	0,96	0,43	0,56	5,59	41,5	37,5	12,2	54	29	17	9,1	12,8	0,224
21	8,18	0,28	1,41	0,64	0,82	8,20	51,8	53,9	26,8	52	25	23	8,5	63,1	0,126
22	8,19	0,26	1,12	0,50	0,65	6,50	43,8	40,5	21,8	50	25	25	9,3	18,9	0,126
23	8,32	0,28	0,74	0,33	0,43	4,30	36,1	31,4	19,0	55	20	25	9,3	16,2	0,167
24	8,30	0,27	0,66	0,30	0,38	3,84	43,4	37,5	19,3	53	20	27	8,6	21,7	0,126
25	8,15	0,30	2,31	1,04	1,34	13,37	39,3	36,2	19,1	53	23	24	10,4	33,8	0,505
26	8,29	0,24	0,42	0,19	0,24	2,45	25,6	14,4	7,2	78	8	14	5,8	14,6	0,442
27	8,36	0,25	0,93	0,42	0,54	5,40	29,7	23,6	16,5	68	16	16	7,3	34,6	0,442
28	8,23	0,25	1,71	0,77	0,99	9,94	23,9	19,9	8,1	39	24	37	24,7	27,9	0,632
29	8,29	0,24	0,76	0,34	0,44	4,43	42,4	29,6	9,0	56	21	24	9,5	15,9	0,505
30	8,32	0,23	0,71	0,32	0,41	4,15	27,4	27,9	12,5	45	26	29	10,7	24,1	0,537
31	8,26	0,27	1,61	0,73	0,94	9,35	32,9	24,5	12,5	44	21	35	25,5	21,4	0,379
32	8,51	0,24	0,44	0,20	0,25	2,55	27,9	16,6	7,5	73	14	13	6,0	31,5	0,190
33	8,48	0,21	0,33	0,15	0,19	1,94	14,1	8,2	1,9	74	15	11	5,4	13,1	0,253
34	8,41	0,25	1,07	0,48	0,62	6,23	24,8	34,9	16,9	66	17	17	17,7	30,3	0,224
35	8,49	0,22	0,43	0,19	0,25	2,51	27,8	6,9	4,1	84	7	9	6,1	25,0	0,253
36	8,35	0,23	0,57	0,25	0,33	3,28	29,5	7,6	5,0	84	6	10	6,1	23,6	0,252
37	8,44	0,26	1,59	0,72	0,92	9,23	24,0	43,2	18,1	36	25	39	6,6	12,5	0,253
38	8,01	0,39	1,09	0,49	0,63	6,34	44,7	30,8	14,7	34	36	29	17,9	13,1	0,758
39	8,28	0,25	1,09	0,49	0,63	6,34	45,4	21,0	11,2	66	9	26	19,0	20,1	0,347
40	8,42	0,25	1,49	0,67	0,86	8,64	42,7	31,0	13,7	59	16	24	15,5	25,2	0,253
41	8,48	0,28	1,31	0,59	0,76	7,59	14,8	30,9	14,0	36	23	42	16,9	5,8	0,315
42	8,44	0,27	1,85	0,83	1,07	10,74	16,5	12,8	7,5	79	9	12	7,2	23,1	0,253
43	8,79	0,25	1,41	0,63	0,82	8,17	9,2	8,7	9,4	83	8	9	7,0	15,2	0,190
44	7,99	1,93	1,59	0,72	0,92	9,24	17,0	26,2	11,9	59	19	22	7,8	20,3	10,737
45	7,91	2,18	1,79	0,80	1,04	10,36	25,7	23,3	21,6	34	62	3	8,9	17,7	14,521
46	7,94	2,18	2,96	1,33	1,72	17,18	20,5	24,7	20,0	43	54	3	16,6	25,8	12,933
47	8,60	0,28	2,33	1,05	1,35	13,54	12,4	19,4	9,1	74	12	14	7,0	34,0	0,253
48	8,69	0,22	2,66	1,19	1,54	15,41	57,4	18,8	10,0	75	8	17	6,6	16,1	0,224
49	8,50	0,24	3,50	1,57	2,03	20,31	4,7	52,2	19,4	23	39	38	17,4	19,2	0,190
50	8,50	0,24	2,41	1,08	1,40	13,99	30,5	63,8	20,9	24	40	37	11,7	26,1	0,126

61	CLAVE	рН	CE(dS/m)	MO (%)	Coox (%)	Corg (%)	Corg (g/kg)	E gruesos (%)	%CaCO3	%CaCO3activo	% arena	% lim o	% arcilla	CIC (meq/100g)	Fracción estable (%)	Yeso (g/kg)
102										21.9						
18							16,24		27,5	14,9	63	2	35		22,6	0,224
54		8,64	0,25	1,01	0,45	0,59	5,85	47,1	28,8	14,4	69	2	29	7,4	29,4	0,189
56										-						
S		8,73	0,19	0,84	0,38	0,49	4,88	44,7	26,8	7,4	80	9	12	7,0	29,1	0,224
57		8,70	0,24	0,82	0,37	0,48	4,78	49,3	20,1	9,5	81	7	12	7,4	15,3	0,253
99								57,7	20,9		83	4	13			
99	58	8,53	0,25	0,97	0,44	0,57	5,65	47,5	26,1	12,1	77	9	14	8,2	38,7	0,224
61	59	8,67	0,27	0,69	0,31	0,40	4,00	21,7	27,7	12,8	72	14	14	8,7	24,6	0,224
61	60	8,66	0,24	1,07	0,48	0,62	6,21	48,7	30,8	10,3	75	11	14	9,3	30,3	0,224
62 7.9 2.20		8,13	0,36	0,87	0,39			52,4	29,3	9,0	76	12	12	8,6	16,1	0,284
63		7,9	2,20	0,61	0,27	0,35	3,54	14	17	10	58	37	4	9,7		10,741
64		7,8	2,22	0,63	0,28	0,36	3,63	9	20	10	58	36	6	10,4	10,9	11,676
66		7,9	1,77	0,86	0,39	0,50	4,97	9	27	12	55	22	22	20,9	17,7	7,582
67	65	7,9	2,12		0,26	0,34	3,35	13	15	10	57	38	5	10,2		12,637
67																
88													_			
88																
70 8.4 0.25 1.14 0.51 0.68 6.61 16 47 16 60 17 24 14.1 15.5 0.411 71 8.4 0.30 0.89 0.40 0.52 5.16 20 52 14 61 19 20 11.7 15.1 15.5 0.411 72 8.4 0.27 1.37 0.61 0.79 7.92 38 30 10 12 69 14 17 17.1 13.1 3.3 0.447 73 8.3 0.28 1.27 0.57 0.74 7.38 39 30 10 12 69 14 17 17.1 13.1 3.3 0.447 74 8.5 0.23 0.74 0.33 0.43 4.31 30 48 17 54 24 22 9.4 22 9.4 22.2 0.379 75 8.5 0.66 0.59 0.25 0.33 3.25 27 142 16 55 22 22 10.6 27.6 0.411 76 8.4 0.23 0.61 0.27 0.35 3.55 19 41 16 58 17 25 15.8 27.3 0.474 77 8.2 0.17 0.83 0.28 0.39 3.55 19 41 16 58 17 25 15.8 27.3 0.474 78 8.0 0.18 0.79 0.34 0.44 0.43 13 41 14 63 17 0.20 10.0 33.6 0.379 79 8.0 0.18 0.78 0.39 0.51 5.07 33 50 17 49 23 27 7.9 33.9 0.555 80 8.3 0.18 0.74 0.33 0.43 0.43 0.44 1.58 13 41 14 63 17 0.20 10.0 33.6 0.379 80 8.3 0.18 0.74 0.33 0.43 0.44 0.44 38 13 41 14 63 17 20 10.0 33.6 0.379 80 8.3 0.18 0.74 0.33 0.43 0.43 0.43 13 0.44 14 14 63 17 0.20 10.0 33.6 0.379 80 8.3 0.18 0.74 0.33 0.43 0.43 0.43 13 0.44 13 14 14 63 17 0.20 10.0 33.6 0.379 80 8.3 0.18 0.74 0.33 0.43 0.43 0.43 13 0.43 13 14 11 15 17 32 34 12 27 7.9 33.9 0.555 81 82 82 8.2 0.23 1.80 0.72 0.33 0.43 0.43 0.43 13 0.5 13 37 34 29 10.7 23.4 0.244 82 82 8.2 0.23 1.80 0.72 0.39 0.51 5.07 33 50 17 49 23 27 7.9 33.9 0.555 84 8.4 0.31 1.45 0.65 0.84 8.86 11 51 17 32 34 34 20.6 27.0 0.34 0.34 0.34 0.34 0.34 0.34 1.35 17 17 17 17 17 17 17 17 17 17 17 17 17																
71 8,4 0,39 0,89 0,40 0,52 5,16 20 52 14 61 19 20 11,7 18,1 0,347 73 8,4 0,27 1,37 0,61 0,79 7,92 38 30 12 69 14 17 17,1 13,1 3,047 73 8,5 0,23 0,74 0,33 0,43 4,31 30 48 17 54 24 22 9,4 22,2 9,4 22,2 0,4 22,2 14,1 18 18,1 0,47 17,6 18,1 18,1 18,1 18,1 18,1 18,1 18,1 18									47	16						
72									52							
73 8.3 0.6 1.27 0.57 0.74 7.38 39 30 12 64 16 20 19.0 26.4 0.473 7.4 8.5 0.5 0.23 0.74 0.33 0.43 4.31 30 48 17 54 24 22 9.4 22 0.4 0.27 0.779 76 8.5 0.16 0.56 0.25 0.33 3.25 27 42 16 55 22 22 10.6 27.6 0.411 77 64 8.4 0.23 0.61 0.27 0.35 3.55 19 41 16 58 17 25 15.8 27.3 0.474 77 8.2 0.17 0.83 0.28 0.36 3.64 16 46 12 66 16 17 9.6 26.7 3.36 0.379 78 8.5 0.18 0.76 0.34 0.44 4.38 13 41 14 14 53 17 20 10.0 3.36 0.379 79 8.0 0.19 0.67 0.33 0.43 4.30 5 35 13 41 14 14 83 17 20 10.0 3.36 0.379 80 8.3 0.18 0.74 0.33 0.43 4.30 5 35 13 37 34 29 10.7 2.34 0.284 81 8.3 0.18 0.74 0.33 0.64 4.30 5 35 13 37 34 29 10.7 2.34 0.284 82 2.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2																
74 8.5 0.23 0.74 0.33 0.43 4.31 30 48 17 54 24 22 9.4 23.2 0.379 75 8.5 0.16 0.56 0.25 0.33 3.26 27 42 16 55 22 22 10.6 27.6 0.411 76 8.4 0.23 0.61 0.27 0.35 3.55 19 41 16 58 17 25 15.6 15.8 27.3 0.474 77 8.2 0.17 0.83 0.28 0.36 3.56 19 41 16 58 17 26 15.8 27.3 0.474 78 8.0 0.18 0.76 0.34 0.44 4.38 13 41 14 63 17 26 15.8 17 20 10.0 33.6 0.379 78 8.0 0.18 0.76 0.39 0.51 5.07 33 50 17 49 23 27 7.9 33.9 0.55 80 8.3 0.18 0.74 0.33 0.43 4.30 5 35 13 37 34 23 10.7 23.4 0.284 81 8.0 0.22 1.53 0.69 0.89 0.89 8.88 11 51 17 32 34 34 20.6 27.0 0.348 82 8.2 0.23 1.60 0.72 0.93 9.27 10 25 11 21 47 32 25.8 22.8 0.347 83 8.2 0.58 1.31 0.59 0.76 7.62 25 39 13 39 29 33 16.7 16.6 0.068 84 8.4 0.31 1.45 0.65 0.84 8.39 32 35 13 37 39 29 33 16.7 16.6 0.068 85 8.4 0.25 0.68 1.34 0.60 0.78 0.79 0.79 0.79 34 50 12 44 27 29 10.4 28.9 0.264 86 8.4 0.24 0.35 1.49 0.67 0.34 0.43 4.34 26 40 12 44 27 29 10.4 28.9 0.264 87 8.4 0.34 1.08 0.49 0.63 6.26 35 43 13 37 39 29 39 10.4 28.9 0.264 89 8.6 0.22 0.91 0.41 0.53 0.42 4.22 26 50 18 36 33 24 35 11 35 9.1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		8.3						39	30		64	16	20			0.473
75																
76 8,4 0,23 0,61 0,27 0,35 3,55 19 41 16 58 17 25 15,8 27,3 0,474 77 8,2 0,17 0,63 0,28 0,36 3,64 16 46 12 66 16 17 9,6 28,7 0,379 78 8,0 0,18 0,76 0,34 0,44 4,38 13 41 14 63 17 20 10,0 33,6 0,379 79 8,0 0,19 0,67 0,39 0,51 5,07 33 50 17 49 23 27 7,9 33,9 0,505 80 8,3 0,18 0,69 0,89 8,86 11 51 17 32 34 34 20,6 27,0 0,348 82 8,2 0,23 1,53 0,69 0,89 8,86 11 51 17 32 34 34	75	8.5	0.16	0.56	0.25	0.33	3.25	27	42	16	55	22	22	10.6	27.6	0.411
77													_			
79 8,0 0,19 0,67 0,39 0,51 5,07 33 50 17 49 23 27 7,9 33,9 0,505 80 8,3 0,18 0,74 0,33 0,43 4,30 5 35 13 37 34 29 10,7 23,4 0,28 81 8,0 0,22 1,53 0,69 0,89 8,86 11 51 17 32 34 34 20 27,0 0,348 82 8,2 0,23 1,60 0,72 0,93 9,27 10 25 11 21 47 32 25,8 22,8 2,28 0,347 83 8,2 0,58 1,31 0,59 0,76 7,62 25 39 13 39 29 33 18,7 16,6 0,505 84 8,4 0,31 1,45 0,65 0,84 8,39 32 35 13 36		8,2	0,17	0,63	0,28	0,36	3,64	16	46	12	66	16	17	9,6	28,7	0,379
79 8,0 0,19 0,67 0,39 0,51 5,07 33 50 17 49 23 27 7,9 33,9 0,505 80 8,3 0,18 0,74 0,33 0,43 4,30 5 35 13 37 34 29 10,7 23,4 0,28 81 8,0 0,22 1,53 0,69 0,89 8,86 11 51 17 32 34 34 20 27,0 0,348 82 8,2 0,23 1,60 0,72 0,93 9,27 10 25 11 21 47 32 25,8 22,8 2,28 0,347 83 8,2 0,58 1,31 0,59 0,76 7,62 25 39 13 39 29 33 18,7 16,6 0,505 84 8,4 0,31 1,45 0,65 0,84 8,39 32 35 13 36	78	8.0	0.18	0.76	0.34	0.44	4.38	13	41	14	63	17	20	10.0	33.6	0.379
80									50							
81 8,0 0,22 1,53 0,69 0,89 8,86 11 51 17 32 34 34 20,6 27,0 0,348 82 8,2 0,23 1,60 0,72 0,93 9,27 10 25 11 21 47 32 25,8 22,8 0,347 83 8,2 0,58 1,31 0,59 0,76 7,62 25 39 13 39 29 33 18,7 16,6 0,505 84 8,4 0,31 1,45 0,65 0,84 8,39 32 35 13 36 30 34 20,1 20,3 0,284 85 8,2 0,88 1,34 0,60 0,78 7,79 34 50 12 51 25 24 8,6 30 34 20,1 28,9 0,224 86 8,4 0,34 1,08 0,49 0,63 6,26 35 43 <td></td> <td>8,3</td> <td>0,18</td> <td></td> <td>0,33</td> <td></td> <td></td> <td>5</td> <td>35</td> <td>13</td> <td>37</td> <td></td> <td>29</td> <td>10,7</td> <td></td> <td></td>		8,3	0,18		0,33			5	35	13	37		29	10,7		
83		8,0	0,22	1,53	0,69	0,89	8,86	11	51	17	32	34	34	20,6	27,0	0,348
83	82	8,2	0,23	1,60	0,72	0,93	9,27	10	25	11	21	47	32	25,8	22,8	0,347
85 8,2 0,68 1,34 0,60 0,78 7,79 34 50 12 51 25 24 8,6 30,4 0,758 86 8,4 0,25 0,75 0,34 0,43 4,34 26 40 12 44 27 29 10,4 28,9 0,224 87 8,4 0,34 1,08 0,49 0,63 6,26 35 43 13 37 36 28 9,6 20,1 0,223 88 8,4 0,28 1,49 0,67 0,87 8,67 36 33 24 59 18 23 9,1 23,6 0,224 89 8,6 0,27 0,91 0,41 0,53 5,26 11 41 7 41 30 29 19,3 9,5 0,190 91 8,6 0,22 0,91 0,41 0,53 5,29 36 56 21 31 34								25		13		29		18,7		
86 8,4 0,25 0,75 0,34 0,43 4,34 26 40 12 44 27 29 10,4 28,9 0,224 87 8,4 0,34 1,08 0,49 0,63 6,26 35 43 13 37 36 28 9,6 20,1 0,223 88 8,4 0,28 1,49 0,67 0,87 8,67 36 33 24 59 18 23 9,1 23,6 0,224 89 8,6 0,27 0,91 0,41 0,53 5,26 11 41 7 41 30 29 19,3 9,5 0,190 90 8,5 0,25 0,73 0,33 0,42 4,22 26 50 18 36 36 28 14,4 16,2 0,167 91 8,6 0,22 0,91 0,41 0,53 5,29 36 56 21 31 34	84	8,4	0,31	1,45	0,65	0,84	8,39	32	35	13	36	30	34	20,1	20,3	0,284
87 8,4 0,34 1,08 0,49 0,63 6,26 35 43 13 37 36 28 9,6 20,1 0,253 88 8,4 0,28 1,49 0,67 0,87 8,67 36 33 24 59 18 23 9,1 23,6 0,224 89 8,6 0,27 0,91 0,41 0,53 5,26 11 41 7 41 30 29 19,3 9,5 0,190 90 8,5 0,25 0,73 0,33 0,42 4,22 26 50 18 36 36 28 19,4 16,2 0,167 91 8,6 0,22 0,91 0,41 0,53 5,29 36 56 21 31 34 35 11,1 34,9 0,190 92 8,6 0,25 0,78 0,35 0,45 4,53 32 46 13 35 35	85	8,2	0,68	1,34	0,60	0,78	7,79	34	50	12	51	25	24	8,6	30,4	0,758
88 8,4 0,28 1,49 0,67 0,87 8,67 36 33 24 59 18 23 9,1 23,6 0,224 89 8,6 0,27 0,91 0,41 0,53 5,26 11 41 7 41 30 29 19,3 9,5 0,190 90 8,5 0,25 0,73 0,33 0,42 4,22 26 50 18 36 36 28 11,4 16,2 0,190 91 8,6 0,22 0,91 0,41 0,53 5,29 36 56 21 31 34 35 11,1 34,9 0,190 92 8,6 0,25 0,78 0,35 0,45 4,53 32 46 13 35 30 11,1 17,1 0,126 93 8,6 0,24 1,13 0,51 0,65 6,53 41 51 16 42 30 28	86	8,4	0,25	0,75	0,34	0,43	4,34	26	40	12	44	27	29	10,4	28,9	0,224
89 8,6 0,27 0,91 0,41 0,53 5,26 11 41 7 41 30 29 19,3 9,5 0,190 90 8,5 0,25 0,73 0,33 0,42 4,22 26 50 18 36 36 28 14,4 16,2 0,167 91 8,6 0,22 0,91 0,41 0,53 5,29 36 56 21 31 34 35 11,1 34,9 0,190 92 8,6 0,25 0,78 0,35 0,45 4,53 32 46 13 35 35 30 11,1 17,1 0,126 93 8,6 0,24 1,13 0,51 0,65 6,53 41 51 16 42 30 28 12,5 37,6 0,189 94 8,5 0,27 0,90 0,40 0,52 5,19 18 40 20 46 28	87	8,4	0,34	1,08	0,49	0,63	6,26	35	43	13	37	36	28	9,6	20,1	0,253
90 8.5 0.25 0.73 0.33 0.42 4.22 26 50 18 36 36 28 14.4 16.2 0.167 91 8.6 0.22 0.91 0.41 0.53 5.29 36 56 21 31 34 35 11.1 34.9 0.190 92 8.6 0.25 0.78 0.35 0.45 4.53 32 46 13 35 35 30 11.1 17.1 17.1 0.126 93 8.6 0.24 1.13 0.51 0.65 6.53 41 51 16 42 30 28 12.5 37.6 0.128 94 8.5 0.27 0.90 0.40 0.52 5.19 18 40 20 46 28 26 14.9 18.3 0.284 95 8.4 0.31 1.86 0.83 1.08 10.77 13 40 27 13 46 41 25.0 12.3 0.252 96 8.6 0.25 0.64 0.29 0.37 3.70 54 58 21 36 26 39 13.9 10.1 0.126 97 8.5 0.26 0.55 0.25 0.32 3.21 33 50 19 36 35 30 16.0 18.0 0.348 98 8.6 0.25 0.82 0.37 0.48 4.77 53 54 15 33 36 31 15.5 14.8 0.316		8,4	0,28	1,49	0,67	0,87	8,67	36	33	24	59	18	23	9,1	23,6	0,224
91 8.6 0.22 0.91 0.41 0.53 5.29 36 56 21 31 34 35 11,1 34,9 0,190 92 8.6 0.25 0.78 0.35 0.45 4.53 32 46 13 35 35 30 11,1 17,1 17,1 0,126 93 8.6 0.24 1,13 0.51 0.65 6,53 41 51 16 42 30 28 12,5 37,6 0,189 94 8.5 0.27 0.90 0.40 0.52 5,19 18 40 20 46 28 26 14,9 18,3 0.284 95 8.4 0.31 1,86 0.83 1,08 10,77 13 40 27 13 46 41 25,0 12,3 0,252 96 8.6 0.25 0.64 0.29 0.37 3,70 54 58 21 36 26 39 13,9 10,1 0,126 97 8.5 0.26 0.55 0.25 0.32 3,21 33 50 19 36 35 30 16,0 18,0 0,348 98 8.6 0.24 1,49 0.67 0.67 0.67 8.67 53 52 18 36 31 34 18,0 20,0 0,348 99 8.6 0.25 0.82 0.37 0.48 4,77 53 54 15 33 36 31 15,5 14,8 0,316	89	8,6	0,27	0,91	0,41	0,53	5,26	11	41	7	41	30	29	19,3	9,5	0,190
92 8.6 0,25 0,78 0,35 0,45 4,53 32 46 13 35 35 30 11,1 17,1 0,126 93 8.6 0,24 1,13 0,51 0,65 6,53 41 51 16 42 30 28 12,5 37,6 0,189 94 8,5 0,27 0,90 0,40 0,52 5,19 18 40 20 46 28 26 12,5 37,6 18,3 0,284 95 8.4 0,31 1,86 0,83 1,08 10,77 13 40 27 13 46 41 25,0 12,3 0,252 96 8,6 0,25 0,64 0,29 0,37 3,70 54 58 21 36 26 39 13,9 10,1 0,126 97 8,5 0,26 0,55 0,25 0,32 3,21 33 50 19 36 35 30 16,0 18,0 0,348 98 8,6 0,24 1,49 0,67 0,67 8,67 53 52 18 36 31 34 18,0 20,0 0,348 99 8,6 0,25 0,82 0,37 0,48 4,77 53 54 15 33 36 31 15,5 14,8 0,316	90	8,5	0,25	0,73	0,33	0,42	4,22	26	50	18	36	36	28	14,4	16,2	0,167
93 8,6 0,24 1,13 0,51 0,65 6,53 41 51 16 42 30 28 12,5 37,6 0,189 94 8,5 0,27 0,90 0,40 0,52 5,19 18 40 20 46 28 26 14,9 18,3 0,284 95 8,4 0,31 1,86 0,83 1,08 10,77 13 40 27 13 46 41 25,0 12,3 0,252 96 8,6 0,25 0,64 0,29 0,37 3,70 54 58 21 36 26 39 13,9 10,1 0,126 97 8,5 0,26 0,55 0,25 0,32 3,21 33 50 19 36 35 39 13,9 10,1 0,128 98 8,6 0,24 1,49 0,67 0,87 8,67 53 52 18 36 31 34 18,0 2,0 0,379 99 8,6 0,25 0,82 0,37 0,48 4,77 53 54 15 33 36 31 15,5 14,8 0,316	91	8,6	0,22	0,91	0,41	0,53	5,29	36	56	21	31	34	35	11,1	34,9	0,190
94 8.5 0.27 0.90 0.40 0.52 5.19 18 40 20 46 28 26 14.9 18.3 0.284 95 8.4 0.31 1.86 0.83 1.08 10.77 13 40 27 13 46 41 25.0 12.3 0.252 96 8.6 0.25 0.64 0.29 0.37 3.70 54 58 21 36 26 39 13.9 10.1 0.126 97 8.5 0.26 0.55 0.25 0.32 3.21 33 50 19 36 35 30 16.0 18.0 0.348 98 8.6 0.24 1.49 0.67 0.87 8.67 53 52 18 36 31 34 18.0 20,0 0.379 99 8.6 0.25 0.82 0.37 0.48 4.77 53 54 15 33 36 31 15.5 14.8 0.316	92	8,6	0,25	0,78	0,35	0,45	4,53	32	46	13	35	35	30	11,1	17,1	0,126
95 8.4 0.31 1.86 0.83 1.08 10.77 13 40 27 13 46 41 25.0 12.3 0.252 96 8.6 0.25 0.64 0.29 0.37 3.70 54 58 21 36 26 39 13.9 10.1 0.126 97 8.5 0.26 0.55 0.25 0.32 3.21 33 50 19 36 35 30 16.0 18.0 0.348 98 8.6 0.24 1.49 0.67 0.67 8.67 53 52 18 36 31 34 18.0 20.0 0.348 99 8.6 0.25 0.82 0.37 0.48 4.77 53 54 15 33 36 31 15.5 14.8 0.316	93	8,6	0,24	1,13	0,51	0,65	6,53	41	51	16	42	30	28	12,5	37,6	0,189
96 8,6 0,25 0,64 0,29 0,37 3,70 54 58 21 36 26 39 13,9 10,1 0,126 97 8,5 0,26 0,55 0,25 0,32 3,21 33 50 19 36 35 30 16,0 18,0 0,348 98 8,6 0,24 1,49 0,67 0,87 8,67 53 52 18 36 31 34 18,0 20,0 0,379 99 8,6 0,25 0,82 0,37 0,48 4,77 53 54 15 33 36 31 15,5 14,8 0,316	94	8,5	0,27	0,90	0,40	0,52	5,19	18	40	20	46	28	26	14,9	18,3	0,284
97 8.5 0.26 0.55 0.25 0.32 3.21 33 50 19 36 35 30 16.0 18.0 0.348 98 8.6 0.24 1.49 0.67 0.87 8.67 53 52 18 36 31 34 18.0 20.0 0.379 99 8.6 0.25 0.82 0.37 0.48 4.77 53 54 15 33 36 31 15.5 14.8 0.316	95	8,4	0,31	1,86	0,83	1,08	10,77	13	40	27	13	46	41	25,0	12,3	0,252
98 8,6 0,24 1,49 0,67 0,87 8,67 53 52 18 36 31 34 18,0 20,0 0,379 99 8,6 0,25 0,82 0,37 0,48 4,77 53 54 15 33 36 31 15,5 14,8 0,316	96	8,6	0,25	0,64	0,29	0,37	3,70	54	58	21	36	26	39	13,9	10,1	0,126
99 8,6 0,25 0,82 0,37 0,48 4,77 53 54 15 33 36 31 15,5 14,8 0,316	97	8,5	0,26	0,55	0,25	0,32	3,21	33	50	19	36	35	30	16,0	18,0	0,348
	98	8,6	0,24	1,49	0,67	0,87	8,67	53	52	18	36	31	34	18,0	20,0	0,379
100 8.4 0.25 2,01 0,90 1,17 11,67 54 35 12 34 35 31 20,7 12,3 0,411	99	8,6	0,25	0,82	0,37	0,48	4,77	53	54	15	33	36	31	15,5	14,8	0,316
	100	8,4	0,25	2,01	0,90	1,17	11,67	54	35	12	34	35	31	20,7	12,3	0,411

CLAVE	_ рН	CE(dS/m)	MO (%)	Coox (%)	Corg (%)	Corg (g/kg)	E gruesos (%)	%CaCO3	%CaCO3activo	% arena	% limo	% arcilla	CIC (meq/100g)	Fracción estable (%)	Yeso (g/kg)
101	8,6	0,28	1,31	0,59	0,76	7,60	46	53	13	36	32	32	18,8	12,6	0,334
102	8,4	0,29	1,02	0,46	0,59	5,94	42	38	10	41	27	32	17,7	16,5	0,474
103	7,8	2,17	0,89	0,40	0,52	5,16	37	35	7	28	66	7	15,2	9,2	13,590
104	8,6	0,21	0,83	0,37	0,48	4,79	11	41	13	34	34	32	14,1	13,0	0,253
105	7,9	1,12	0,97	0,44	0,56	5,64	35	36	17	33	35	32	15,2	7,2	5,362
106	8,5	0,25	0,75	0,34	0,43	4,32	15	33	12	43	34	22	14,1	23,4	0,002
107	8,5	0,25	0,84	0,38	0,49	4,90	14	28	18	41	34	25	15,2	22,4	0,003
108	8,4	0,27	0,86	0,39	0,50	5,01	15	30	17	42	27	31	14,9	18,5	0,003
109	8,5	0,24	0,83	0,37	0,48	4,82	40	39	18	42	28	31	14,7	19,2	0,003
110	8,5	0,29	0,54	0,24	0,31	3,14	21	41	19	34	28	38	13,0	22,9	0,004
111	8,6	0,24	0,64	0,29	0,37	3,69	47	40	8	35	35	30	12,5	9,0	0,003
112	8,4	0,29	0,82	0,37	0,47	4,74	47	59	16	41	30	29	11,7	19,8	0,003
113	8,5	0,27	0,92	0,42	0,54	5,36	45	39	6	43	27	30	10,6	5,9	0,001
114	8,7	0,29	1,16	0,52	0,67	6,75	53	53	12	39	31	30	10,0	18,0	0,126
115	8,0	0,76	1,50	0,67	0,87	8,68	44	37	8	44	26	30	8,7	13,2	1,139
116	8,6	0,32	0,65	0,29	0,38	3,79	32	46	6	49	23	28	9,2	8,2	0,253
117	8,3	0,38	1,05	0,47	0,61	6,10	14	40	9	30	30	40	11,9	9,0	0,253


ANEXO II: MAPAS TEMÁTICOS



L 0.0

CIC meq/100g

Fracción Estable %

